
Probability Problem With Roulette Wheels

Problem. We have N roulette wheels, each with the same probability p of stopping at zero.

1. We spin all N roulette wheels simultaneously. What is the expected number of spins
needed until all of them stop at zero simultaneously?

2. We spin the first roulette wheel until it stops at zero. Then we do the same with the
second one, and so on, until all roulette wheels have stopped at zero. What is the
expected total number of spins required until all of them have stopped at zero?

3. We randomly pick a roulette wheel and spin it. We continue selecting roulette wheels
at random and spinning them. What is the expected number of spins needed until n
(1 ≤ n ≤ N) distinct wheels have each stopped at zero at least once?

4. We spin all N roulette wheels simultaneously. After each spin, we continue spinning
only the wheels that did not stop at zero. What is the expected number of spins
needed until at least n (1 ≤ n ≤ N) of them have stopped at zero?

Solution.

1. All wheels must land on zero simultaneously. If an event has probability p,
the expected number of repetitions until the event happens is 1

p
. In our case, the

probability that all the wheels stop at zero simultaneously is pN , hence the expected
number of spins T until success is

E[T ] =
1

pN
.

2. Sequentially spin each wheel until it lands on zero. By the linearity of the
expected value, the answer is just the sum of the expected number of times we must
spin each wheel until it stops at zero. For each wheel the expected time is 1

p
, so for

the N wheels it will be

E[T ] =
N

p
.

3. Randomly choose a wheel to spin until n of them have stopped at zero at
least once. This is a version of the coupon collector’s problem.

Let Tn be the number of times taken until n wheels are stopped at zero at least once,
and let E[Tn] be its expected value, i.e., the expected number of times we must spin
wheels until n of them have stopped at zero at least once. Then E[T1] = 1

p
, and

E[Tk+1] − E[Tk] = expected number of spins to get one more wheel stopping at zero
for the first time after k of them already did it. The probability of picking a wheel



that has not yet stopped at zero is N−k
N

, and the probability of it stopping at zero

is the product N−k
N

p, so the expected time for that event to occur is N
(N−k) p

. Hence

E[Tn] =
N
p

∑n−1
k=0

1
N−k

, and we get

E[Tn] =
N

p
(HN −HN−n) ,

where Hn =
∑n

k=1
1
k
= nth harmonic number.

Added: Asymptotic approximations for case 3. Next, we show a few ap-
proximations of E[Tn] than can be obtained using the asymptotic expansion Hn =
ln (n) + γ + 1

2n
+O( 1

n2 ) as n → ∞:

(a) If n = N then E[TN ] =
1
p

{
N ln (N) + γ + 1

2
+O( 1

N
)
}
.

(b) More generally E[Tn] =
1
p

{
−N ln (1− n

N
)− n

2(N−n)
+O( 1

N
)
}
, useful when both

N and N − n are large. The approximation E[Tn] ≈ −N
p
ln (1− n

N
) resembles a

process of radioactive decay (n = N(1− e−λt), with t = E[Tn], λ = p
N
).

(c) The expression can be rewritten:

E[Tn] =
1

p

∞∑
i=0

( 1

N i

n−1∑
k=1

ki
)
=

n

p

{
1 +

n− 1

2N
+

(2n− 1)(n− 1)

6N2
+ · · ·

}
,

which can be used to approximate E[Tn] for large N and small n/N .

4. Spin all wheels simultaneously, but stop spinning the ones that have already
stopped at zero. This case is equivalent to a sequential independent geometric
waiting times, where in each round the number of active wheels decreases.

Let Xk be the number of rounds between the k-th and k + 1-th wheel stopping at
zero (with X0 being the rounds until the first success). In each round we spin N − k
active wheels. The probability that at least one of these active wheels stops at zero in
a single round is:

Pk = 1− (1− p)N−k.

Therefore, the expected number of rounds between the k-th and k + 1-th wheels
stopping at zero is:

E[Xk] =
1

1− (1− p)N−k
.

Summing over k = 0 to n − 1, the expected total number of rounds until at least n
wheels have stopped at zero is:

E[Tn] =
n−1∑
k=0

1

1− (1− p)N−k
.



Added: Asymptotic Approximations for case 4.

(a) Small p approximation: When p ≪ 1, we can approximate

(1− p)m ≈ e−pm for m = N − k.

Therefore,

E[Tn] ≈
n−1∑
k=0

1

1− e−p(N−k)
.

(b) Large N , moderate n: If N is small and n is moderate, we can approximate
the sum by an integral. Define x = k/N , then:

E[Tn] ≈ N

∫ n/N

0

1

1− (1− p)N(1−x)
dx.

This integral can be evaluated numerically, or, if pN is also small, further approx-
imated using Laplace’s method, leading to (see appendix):

E[Tn] ≈
1

p
log

(
N

N − n

)
for large N and p ≪ 1/N.
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Appendix: Laplace-Type Asymptotic Approximation for E[T ] in case 4.

Recall the integral approximation derived above:

E[Tn] ≈ N

∫ n/N

0

1

1− (1− p)N(1−x)
dx.

For small p and large N , we use the approximation:

(1− p)N(1−x) ≈ e−pN(1−x) ⇒ 1

1− (1− p)N(1−x)
≈ 1

1− e−pN(1−x)
.

Next, change variables:

u = N(1− x) ⇒ x = 1− u

N
, dx = − 1

N
du.

As x goes from 0 to n/N , u goes from N to N − n. Rewriting the integral:

E[T ] ≈
∫ N

N−n

1

1− e−pu
du.

If pN is small, then pu is small and can we can use the Taylor approximation:

e−pu = 1− pu+
(pu)2

2
+ · · · ⇒ 1− e−pu ≈ pu ⇒ 1

1− e−pu
≈ 1

pu
.

Thus:

E[Tn] ≈
∫ N

N−n

1

pu
du =

1

p

∫ N

N−n

1

u
du =

1

p
(logN − log(N − n)) =

1

p
log

(
N

N − n

)
.

Hence:

E[Tn] ≈
1

p
log

(
N

N − n

)
for large N and p ≪ 1/N.


