Eventually constant modulo m. Prove that for any two posmve integers a and m, the

following sequence is eventually constant modulo m: a,a®,a®,a® ,....

Solution. The result is trivial if a = 1 or m = 1, so we may assume that ¢ > 2 and m > 2.

For convenience we use Donald Knuth’s arrow notation for the iterated power:
n levels
.a

alln=a"

Its recursive definition is the following: @ 11 0=1, a 1T (n+ 1) = a®!",

So we must prove that a 1T n is eventually constant modulo m. The proof works by
induction on m.

(1) Basic Step: If m = 2 then obviously a 1T n = a (mod 2) for every n > 0, because
a 1T n has the same parity has a.

(2) Induction Step: Assume that the result is true for every modulo up to m — 1. We
will prove that it is also true for modulo m.

(a) Case 1: If ged(a, m) = 1, by Euler’s theorem
a1l (n+1)=qaln = gleln) med ém) (164 m)

where ¢ = Euler’s phi function and x mod y = “z reduced modulo y”. Since
¢(m) < m, by induction hypothesis (a 1T n) mod ¢(m) is eventually constant,
hence {a 77 (n+ 1)} mod m is eventually constant.

(b) Case 2: If ged(a,m) = g > 1 then we write m = myma, were ged(my, mg) = 1
and m; contains exactly the same prime factors as g, perhaps raised to different
exponents. Clearly a 1T n =0 (mod m,) for n large enough. If my = 1 then we
are done, otherwise 1 < mgy < m and ged(a, ms) = 1, so by induction hypothesis
(a 77 n) mod my is eventually constant, say k = (a 1T n) mod my for all n large
enough. According to the Chinese Remainder Theorem, the following system of
congruences

r=0 (mod my)
{ r=k (mod my)
has a unique solution = r modulo m = myms, hence a 11 n =r (mod m) for
all n large enough. This completes the proof.

Remark: The result can be generalized to any tower of exponents with an increasing number
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of levels, even if the exponents are not all the same: aq,a;%, a;

Corollary (graduate level): a 11T n has a p-adic limit as n — oo for every p.
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