
Eventually constant modulo m. Prove that for any two positive integers a and m, the

following sequence is eventually constant modulo m: a, aa, aaa
, aaaa

, . . . .

Solution. The result is trivial if a = 1 or m = 1, so we may assume that a ≥ 2 and m ≥ 2.

For convenience we use Donald Knuth’s arrow notation for the iterated power:

a ↑↑ n =

n levels︷︸︸︷
aa··

·a

.

Its recursive definition is the following: a ↑↑ 0 = 1, a ↑↑ (n + 1) = aa↑↑n.

So we must prove that a ↑↑ n is eventually constant modulo m. The proof works by
induction on m.

(1) Basic Step: If m = 2 then obviously a ↑↑ n ≡ a (mod 2) for every n > 0, because
a ↑↑ n has the same parity has a.

(2) Induction Step: Assume that the result is true for every modulo up to m − 1. We
will prove that it is also true for modulo m.

(a) Case 1: If gcd(a, m) = 1, by Euler’s theorem

a ↑↑ (n + 1) = aa↑↑n ≡ a(a↑↑n) mod φ(m) (mod m) ,

where φ = Euler’s phi function and x mod y = “x reduced modulo y”. Since
φ(m) < m, by induction hypothesis (a ↑↑ n) mod φ(m) is eventually constant,
hence {a ↑↑ (n + 1)} mod m is eventually constant.

(b) Case 2: If gcd(a, m) = g > 1 then we write m = m1m2, were gcd(m1, m2) = 1
and m1 contains exactly the same prime factors as g, perhaps raised to different
exponents. Clearly a ↑↑ n ≡ 0 (mod m1) for n large enough. If m2 = 1 then we
are done, otherwise 1 < m2 < m and gcd(a, m2) = 1, so by induction hypothesis
(a ↑↑ n) mod m2 is eventually constant, say k = (a ↑↑ n) mod m2 for all n large
enough. According to the Chinese Remainder Theorem, the following system of
congruences {

x ≡ 0 (mod m1)

x ≡ k (mod m2)

has a unique solution x = r modulo m = m1m2, hence a ↑↑ n ≡ r (mod m) for
all n large enough. This completes the proof.

Remark : The result can be generalized to any tower of exponents with an increasing number

of levels, even if the exponents are not all the same: a1, a1
a2 , a

a
a3
2

1 , a
a

a
a4
3

2
1 , . . . .

Corollary (graduate level): a ↑↑ n has a p-adic limit as n →∞ for every p.
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