BIJECTION BETWEEN TwO SETS

Miguel A. Lerma
August 5, 2025

Problem. Let n be a positive integer, and let m = (n+1)!4-n. If T is the set of n-tuples with
distinct elements of {1,...,m}, and S is the set of (n + 1)-element subsets of {1,...,m}.
Prove that there is a bijection f:7T — S such that for each n-tuple (xi,...,z,) € T,
X1, ..., Ty are in f(xq,...,2,).

Solution. We will use a well known result from graph theory. The basic idea is to define
a graph whose vertices are the elements of 7" and S, and join each tuple ¢t € T with each
subset in s € S such that all elements of ¢ are contained in s. The desired result then follows
from a known theorem in graph theory.

We will be using the following definitions:

A regular graph is a graph where each vertex has the same number of neighbors. A regular
graph with vertices of degree k is called a k-regular graph or regular graph of degree k.

A bipartite graph is a graph whose vertices can be divided into two disjoint and independent
sets such that every edge connects a vertex in one set to a vertex in the other set. In simpler
terms, you can color the graph with two colors, and no two adjacent vertices have the same
color.

A T-perfect (of T saturated) matching in a bypartite graph with parts 7" and S is a matching
with disjoint edges that covers every vertex in 7T'. If the two parts have equal size |T'| = |5],
then a T-perfect matching is also an S-perfect matching, and it is not necessary to specify
respect to which part it is saturated.

The basic result is given by the following theorem:

Theorem. In any k-regular bipartite graph with equal partition sizes T" and S, a perfect
matching exists.

Proof of the Theorem. We use Hall’'s Marriage Theorem, which provides a necessary and
sufficient condition for the existence of a perfect matching in bipartite graphs with equal
parts. The Hall’s condition is: For every subset A of T, the neighborhood N(A) in S
satisfies |[V(A)| > |A|. This condition is in fact satisfied by any k-regular bipartite graph
with equal partition sizes because, taking into account E(A) C E(N(A)), we have

k-[Al = |E(A)] < [E(N(A))| = k- [N(A)],
hence |A| < |N(A)|, and the theorem is proved. O

Proof of the main result. Consider the graph G whose vertices are T'U .S, and its edges join
each element (z1,...,x,) from T to each (n + 1)-element subset of X containing z1, ..., x,.
The graph G is bipartite, and also k-regular with k& = (n+1)! because each vertex has exactly
(n + 1)! neighbors, i.e., for each (x1,...,2,), z1,...,x, are contained in m —n = (n + 1)!
subsets of X with (n+ 1) elements, and for each (n + 1)-element subset {z1,...,Z,41} of X
there are (") - nl = (n + 1)! n-tuples whose elements are in {z1,...,2n41}

So, we have a bipartite k-regular graph G, which by theorem 1 has a perfect matching
M. Then, the desired bijection f:T — S can be obtained by mapping each ordered pair
(x,...,z,) in T to the element of S matched to (z,...,z,) by M.

This completes the proof of the assertion. O

Remark. The sequence (n+ 1)!+n = 1,3,8,27,124,725, ... is A030495 in The On-Line
Encyclopedia of Integer Sequences.

Application: “Communicating the Card” Magic Trick. Alice draws n+1 cards from
the deck at random, without replacement, and passes n of them, one by one, to her accomplice
Bob. If the desk has no more than m = (n+1)! 4+ n cards the order in which Alice passes
the cards to Bob contains enough information for him to deduce the remaining card; they
just need to agree which perfect matching between n-tuples and (n + 1)!-element subsets of
m cards to use.

COMPUTATIONAL APPROACH

An algorithm. The result shown above is merely existential and does not produce any spe-
cific bijection with the required property. Here we provide and actual program (in Python)
that does find a bijection as a perfect matching between T and S. The algorithm stops
because a perfect matching always exists.

from itertools import permutations, combinations
import networkx as nx
from math import factorial

def find_perfect_matching(n):
200
m is (n+1)! + n = number of elements 4in X = {1, ..., m}.
T 72s the set on n-tuples with distinct elements of X.
S ts the set of (n+l1)-element subsets of X.
G is the bipartite graph with nodes T and S.
perfect_matching is the matching between T and S.

200

m = factorial(n+1l) + n

Step 1: Define the sets X, T, and S
X = set(range (1, m+1))

Create n-tuples of distinct elements (T)
T = list(permutations (X, n))

Create (n+l1)-element subsets of X (S)
S = list(combinations (X, n+1))

Step 2: Initialize the bipartite graph G
G = nx.Graph ()

Add nodes with the bipartite attridbute
G.add_nodes_from(T, bipartite=0) # Nodes from T
G.add_nodes_from (S, bipartite=1) # Nodes from S

Step 3: Add edges between nodes in T and S
for t in T:
Find all subsets in S that contain all elements of t
for s in S:
if all(elem in s for elem in t):
G.add_edge(t, s)

Step 4: Find a perfect matching
matching = nx.algorithms.bipartite.matching.\

hopcroft_karp_matching (G, top_nodes=T)

Extract the matching between T and S
perfect_matching = {k: v for k, v in matching.items() if k in T}

return perfect_matching

The following code prints the matching for the case n = 2:

Find the perfect matching
perfect_matching = find_perfect_matching(2)

Output the matching
for t_node, s_node in perfect_matching.items ():
print (£"{t_nodel} ,->,{s_nodel}")

Complexity. Here we look at the computing resources needed to solve the problem as n
grows.

Space Complezity. For a given positive integer n we have | X| =m = (n+ 1)! +n and

Tl = (7:) '”!:#!n)!’ 1= (nTl) - (m—n—n;!)!(n—i—l)!'

For m = (n + 1)! + n we have |T| = |S], although there are situations, such as some
“communicating-the-card” tricks in which m (the size of the card desk) may be allowed to
be less than (n + 1)! + n. Here we will continue assuming m = (n + 1)! + n. Under this
hypothesis we get

n m IT| =S|
1 3 3
2 8 56
3 27 17,550
4 124 995,150,024
5 725 197,554,684,517,400

This leads to a fast increase in the size of the graph. The asymptotic behavior is (using
Stirling’s formula):

n+1
e

m= (0t 1)l +n~ (n4 D~ /2004 D) ()”“ (n = 00),

and
IT| =S|~ ((n+1)H" ~ (2%)”/2(71 + 1)”("+1)+"/26_”(”+1) (n — 00).

Hence, the number of vertices V' and edges E grow as |V| = |T| + |S]| ~ 2((n + 1)))* and
|E| = |T|-|S] ~ ((n + 1)!)*" respectively. They provide an estimation of the space needed
to contain the graph, which will be approximately proportional to ((n + 1)!)%".

Time Complexity. After the graph has been built the program uses the Hopcroft—-Karp
algorithm, with worst-case time complexity O(|E|y/|V]) ~ ((n+1)!)>"/? steps. In theory we
should add the time needed to build the graph, but creating vertices and edges of a graph
can be done much faster than the time taken by each step in the Hopcroft-Karp algorithm,
so here we can safely ignore the graph building time as negligible.

EXPLICIT EXAMPLE

The following is an example of bijection from 7" to S for the particular case n = 2, m = 8§,

that satisfies the desired property:

P e e P A A A A A N e e

e S S

Lo Yo Yo s L Lo o L Yo Yo 1 T T T L L YO Tk o Yo o L L Yo L L LR YR

S’ N N N N N e e S S S e S S e S e e e e e e e e e e S

e Y L e o L L L s Yo Lon Lo on Lo Lo Lo o o Yo Lo Lo Yo Yo Yo Lon LR Lon T

S N N N N N e e S S S S S S e e e e e e e e e e e e S

P T T e o T T 2 e e aon ek e T T T Lo Lo Lk T e 2 e e en e L

D N N N N I N N T N N N N N

