VARIOUS TECHNIQUES

MIGUEL A. LERMA

(Last updated: April 14, 2003)

1. Definitions and Notations

1.1. Notations.

Integer Part, Fractional Part. The integer part of a real number x is |x| = greatest integer less than or equal to x. The fractional part of a real number x is $\langle x \rangle = x - \lfloor x \rfloor$.

1.2. Some Definitions.

Bernoulli polynomials. The Bernoulli polynomials $B_n(x)$ can be defined in various ways. The following are two of them:

(1) By a generating function:

$$\frac{t e^{xt}}{e^t - 1} = \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!}$$

(2) By the following recursive formulas $(n \ge 1)$:

- (1) $B_0(x) = 1$,
- (2) $B'_n(x) = n B_{n-1}(x)$,
- (3) $\int_0^1 B_n(x) dx = 0$.

The first few Bernoulli polynomials are:

$$B_0(x) = 1$$
 $B_1(x) = x - \frac{1}{2}$
 $B_2(x) = x^2 - x + \frac{1}{6}$ $B_3(x) = x^3 - \frac{3}{2}x^2 + \frac{1}{2}x$

The Bernoulli numbers are $B_n = B_n(0)$.

2

2. Various Techniques

2.1. **Summation by Parts.** This is a formula that resembles integration by parts:

$$\sum_{k=m}^{n} a_k b_k = [a_n S_n - a_m S_{m-1}] + \sum_{k=m}^{n-1} (a_k - a_{k+1}) S_k,$$

where $S_k = \sum_{j=t}^k b_j$ (the lower limit is arbitrary).

Example: Prove that the following series converges for every x not an integer:

$$\sum_{n=1}^{\infty} \frac{e^{2\pi i n x}}{n} .$$

Answer: We call

$$S_N = \sum_{n=0}^N e^{2\pi i n x} = \frac{e^{2\pi i (N+1)x} - 1}{e^{2\pi i x} - 1} \qquad (x \notin \mathbb{Z}),$$

hence

$$|S_N| \le \frac{2}{|e^{2\pi ix} - 1|} \,.$$

Next using summation by parts:

$$\sum_{n=1}^{N} \frac{e^{2\pi i n x}}{n} = \frac{1}{N} S_N - \frac{1}{1} S_0 + \sum_{n=1}^{N-1} \left(\frac{1}{n} - \frac{1}{n+1} \right) S_n$$
$$= \frac{S_N}{N} - 1 + \sum_{n=1}^{N-1} \frac{S_n}{n(n+1)}.$$

Letting $N \to \infty$ we get a series that converges absolutely by comparison with

$$\sum_{n=1}^{\infty} \frac{2/|e^{2\pi ix} - 1|}{n(n+1)} = \frac{2}{|e^{2\pi ix} - 1|} \sum_{n=1}^{\infty} \frac{1}{n(n+1)} \stackrel{\text{(telescopic)}}{=} \frac{2}{|e^{2\pi ix} - 1|}.$$

3. Summation Formulas

3.1. The Euler-Maclaurin Summation Formula. Let $f:[a,b]\to \mathbb{C}$ be q times differentiable, $\int_a^b |f^{(q)}(x)| dx < \infty$. Then for $1 \le m \le q$:

$$\sum_{a < n \le b} f(n) = \int_{a}^{b} f(x) dx + \sum_{k=1}^{m} \frac{(-1)^{k}}{k!} \left(B_{k}(\langle b \rangle) f^{(k-1)}(b) - B_{k}(\langle a \rangle) f^{(k-1)}(a) \right) + \frac{(-1)^{m+1}}{m!} \int_{a}^{b} B_{m}(\langle x \rangle) f^{(m)}(x) dx,$$

where $B_k(x) = k$ th Bernoulli polynomial.

Sum of Powers. As an example of application of the Euler-Maclaurin summation formula, we give the sum of the first m rth powers:

$$S(m,r) = \sum_{n=1}^{m} n^{r} = 1^{r} + 2^{r} + 3^{r} + \dots + m^{r}.$$

Here $f(x) = x^r$, so $f^{(k)}(x) = r!x^{(r-k)}/(r-k)!$ for k = 0, 1, ..., r, $f^{(k)}(x) = 0$ for k > r, and

$$\sum_{0 < n \le m} n^r = \int_0^m x^r dx$$

$$+ \sum_{k=1}^{r+1} \frac{(-1)^k}{k!} \left(B_k(\langle m \rangle) f^{(k-1)}(m) - B_k(\langle 0 \rangle) f^{(k-1)}(0) \right)$$

$$= \frac{m^{r+1}}{r+1} + \sum_{k=1}^{r+1} \frac{(-1)^k}{k!} B_k \frac{r!}{(r-k+1)!} m^{r-k+1} - \frac{B_{r+1}}{r+1}$$

$$= \frac{m^{r+1}}{r+1} + \frac{1}{r+1} \sum_{k=1}^{r+1} (-1)^k {r+1 \choose k} B_k m^{r-k+1} - \frac{B_{r+1}}{r+1}$$

Hence

$$S(m,r) = \sum_{n=1}^{m} n^{r} = \frac{1}{r+1} \left\{ \left(\sum_{k=0}^{r+1} (-1)^{k} {r+1 \choose k} B_{k} m^{r-k+1} \right) - B_{r+1} \right\}$$

where B_k are the Bernoulli numbers $B_0 = 1$, $B_1 = -1/2$, $B_3 = 1/6$, etc.

For instance, for r = 2 we get:

$$S(m,2) = \frac{1}{3} \left\{ \left(\sum_{k=0}^{3} (-1)^k \binom{3}{k} B_k m^{3-k} \right) - B_3 \right\}$$

$$= \frac{1}{3} \left\{ B_0 m^3 - 3B_1 m^2 + 3B_2 m - B_3 - B_3 \right\}$$

$$= \frac{1}{3} \left\{ m^3 + \frac{3}{2} m^2 + \frac{1}{2} m \right\}$$

$$= \frac{2m^3 + 3m^2 + m}{6}.$$

3.2. The Poisson Summation Formula. Here f represents a function $f : \mathbb{R} \to \mathbb{C}$. The Fourier transform of f is defined in the following way:

$$\widehat{f}(t) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x t} dx$$
.

Periodic Version of a Function. The "periodic version" of f is defined as follows:

$$f_{per}(x) = \lim_{N \to \infty} \sum_{n=-N}^{N} f(x+n)$$
.

If f is absolutely integrable over \mathbb{R} , i.e., integrable and $\int_{-\infty}^{\infty} |f(x)| dx < \infty$, then $f_{per}(x)$ exists for a.e.¹ x and is periodic: $f_{per}(x+1) = f_{per}(x)$.

Furthermore:

$$\widehat{f}(k) = \int_0^1 f_{per}(x) e^{-2\pi i k x} dx.$$

Poisson Summation Formula. If f is absolutely integrable over \mathbb{R} , of bounded variation and normalized in the sense that for every x,

$$f(x) = \frac{1}{2} \lim_{h \to 0} \{ f(x+h) + f(x-h) \},\,$$

then

$$\sum_{n=-\infty}^{\infty} f(x+n) = \lim_{T \to \infty} \sum_{k=-T}^{T} \widehat{f}(k) e^{2\pi i k x}.$$

¹Every x but a set of measure zero.