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Introduction. These are a few useful inequalities. Most of them are
presented in two versions: in sum form and in integral form. More
generally they can be viewed as inequalities involving vectors, the sum
version applies to vectors in Rn and the integral version applies to
spaces of functions.

First a few notations and definitions.

Absolute value. The absolute value of x is represented |x|.

Norm. Boldface letters line u and v represent vectors. Their scalar
product is represented u·v. In Rn the scalar product of u = (a1, . . . , an)
and v = (b1, . . . , bn) is

u · v =
n∑
i=1

aibi .

For functions f, g : [a, b]→ R their scalar product is∫ b

a

f(x)g(x) dx .

The p-norm of u is represented ‖u‖p. If u = (a1, a2, . . . , an) ∈ Rn, its
p-norm is:

‖u‖p =
( n∑
i=1

|ai|p
)1/p

.

For functions f : [a, b]→ R the p-norm is defined:

‖f‖p =

(∫ b

a

|f(x)|p dx
)1/p

.

For p = 2 the norm is called Euclidean.
1
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Convexity. A function f : I → R (I an interval) is said to be convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for every x, y ∈ I, 0 ≤ λ ≤ 1. Graphically, the condition is that for
x < t < y the point (t, f(t)) should lie below or on the line connecting
the points (x, f(x)) and (y, f(y)).

x yt

f(y)

f(t)

f(x)

Figure 1. Convex function.

Inequalities

1. Arithmetic-Geometric Mean Inequality. (Consequence of con-
vexity of ex and Jensen’s inequality.) The geometric mean of positive
numbers is not greater than their arithmetic mean, i.e., if a1, a2, . . . , an >
0, then ( n∏

i=1

ai

)1/n
≤ 1

n

n∑
i=1

ai .

Equality happens only for a1 = · · · = an. (See also the power means
inequality.)

2. Arithmetic-Harmonic Mean Inequality. The harmonic mean
of positive numbers is not greater than their arithmetic mean, i.e., if
a1, a2, . . . , an > 0, then

n∑n
i=1 1/ai

≤ 1

n

n∑
i=1

ai .

Equality happens only for a1 = · · · = an.

This is a particular case of the Power Means Inequality.
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3. Cauchy. (Hölder for p = q = 2.)

|u · v| ≤ ‖u‖2‖v‖2 .∣∣∣ n∑
i=1

aibi

∣∣∣2 ≤ ∣∣∣ n∑
i=1

a2i

∣∣∣∣∣∣ n∑
i=1

b2i

∣∣∣ .
∣∣∣∫ b

a

f(x)g(x) dx
∣∣∣2 ≤ (∫ b

a

|f(x)|2 dx
)(∫ b

a

|g(x)|2 dx
)
.

4. Chebyshev. Let a1, a2, . . . , an and b1, b2, . . . , bn be sequences of real
numbers which are monotonic in the same direction (we have a1 ≤ a2 ≤
· · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn, or we could reverse all inequalities.)
Then

1

n

n∑
i=1

aibi ≥
( 1

n

n∑
i=1

ai

)( 1

n

n∑
i=1

bi

)
.

Note that LHS− RHS =
1

2n2

∑
i,j

(ai − aj)(bi − bj) ≥ 0.

5. Geometric-Harmonic Mean Inequality. The harmonic mean
of positive numbers is not greater than their geometric mean, i.e., if
a1, a2, . . . , an > 0, then

n∑n
i=1 1/ai

≤
( n∏
i=1

ai

)1/n
.

Equality happens only for a1 = · · · = an.

This is a particular case of the Power Means Inequality.

6. Hölder. If p > 1 and 1/p+ 1/q = 1 then

|u · v| ≤ ‖u‖p‖v‖q .∣∣∣ n∑
i=1

aibi

∣∣∣ ≤ ( n∑
i=1

|ai|p
)1/p( n∑

i=1

|bi|p
)1/q

.

∣∣∣∣∫ b

a

f(x)g(x) dx

∣∣∣∣ ≤ (∫ b

a

|f(x)|p dx
)1/p(∫ b

a

|g(x)|q dx
)1/q

.
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7. Jensen. If ϕ is convex on (a, b), x1, x2, . . . , xn ∈ (a, b), λi ≥ 0
(i = 1, 2, . . . , n),

∑n
i=1 λi = 1, then

ϕ
( n∑
i=1

λixi

)
≤

n∑
i=1

λiϕ(xi) .

8. MacLaurin’s Inequalities. Let ek be the kth degree elementary
symmetric polynomial in n variables:

ek(x1, x2, . . . , xn) =
∑

1≤i1<i2<···ik≤n

xi1xi2 · · ·xik .

Given positive numbers a1, a2, . . . , an, let Sk = ek(a1, a2, . . . , an)/
(
n
k

)
be the averages of the elementary symmetric sums of the ai. Then

S1 ≥
√
S2 ≥ 3

√
S3 ≥ · · · ≥ n

√
Sn ,

with equality if and only if all the ai are equal. (See [3].) (See also
Newton’s Inequalities.)

9. Minkowski. If p > 1 then

‖u + v‖p ≤ ‖u‖p + ‖v‖p ,( n∑
i=1

|ai + bi|p
)1/p
≤
( n∑
i=1

|ai|p
)1/p

+
( n∑
i=1

|bi|p
)1/p

,

(∫ b

a

|f(x) + g(x)|p dx
)1/p

≤
(∫ b

a

|f(x)|p dx
)1/p

+

(∫ b

a

|g(x)|p dx
)1/p

.

Equality holds iff u and v are proportional.

10. Muirhead’s Inequality. Given real numbers a1 ≥ · · · ≥ an, and
b1 ≥ · · · ≥ bn, assume that

∑k
i=1 ai ≤

∑k
i=1 bi for i = 1, . . . , n− 1, and∑n

i=1 ai =
∑n

i=1 bi. Then for any nonnegative real numbers x1, . . . , xn,
we have ∑

σ

xa1σ1 · · ·x
an
σn ≤

∑
σ

xb1σ1 · · ·x
bn
σn ,

where the sums extend over all permutations σ of {1, . . . , n} (see the-
orem 2.18 in [1].)
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11. Newton’s Inequalities. Let ek be the kth degree elementary
symmetric polynomial in n variables:

ek(x1, x2, . . . , xn) =
∑

1≤i1<i2<···ik≤n

xi1xi2 · · ·xik .

Given positive numbers a1, a2, . . . , an, let Sk = ek(a1, a2, . . . , an)/
(
n
k

)
be the averages of the elementary symmetric sums of the ai for k ≥ 1,
and S0 = 1. Then (for k = 1, 2, . . . , n− 1):

Sk−1Sk+1 ≤ S2
k ,

with equality if and only if all the ai are equal. (See also MacLaurin’s
Inequalities).

12. Norm Monotonicity. If ai > 0 (i = 1, 2, . . . , n), s > t > 0, then( n∑
i=1

asi

)1/s
≤
( n∑
i=1

ati

)1/t
,

i.e., if s > t > 0, then ‖u‖s ≤ ‖u‖t.

13. Power Means Inequality. Let r be a non-zero real number.
We define the r-mean or rth power mean of non-negative numbers
a1, . . . , an as follows:

M r(a1, . . . , an) =

(
1

n

n∑
i=1

ari

)1/r

.

If r < 0, and ak = 0 for some k, we define M r(a1, . . . , an) = 0.

The ordinary arithmetic mean is M1, M2 is the quadratic mean, M−1

is the harmonic mean. Furthermore we define the 0-mean to be equal
to the geometric mean:

M0(a1, . . . , an) =
( n∏
i=1

ai

)1/n
.

Then for any real numbers r, s such that r < s, the following inequality
holds:

M r(a1, . . . , an) ≤M s(a1, . . . , an) .

Equality holds if and only if a1 = · · · = an, or s ≤ 0 and ak = 0 for
some k. (See weighted power means inequality).
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14. Power Means Sub/Superadditivity. We use the definition of
r-mean given in subsection 13. Let a1, . . . , an, b1, . . . , bn be non-negative
real numbers.

(1) If r > 1, then the r-mean is subadditive, i.e.:

M r(a1 + b1, . . . , an + bn) ≤M r(a1, . . . , an) +M r(b1, . . . , bn) .

(2) If r < 1, then the r-mean is superadditive, i.e.:

M r(a1 + b1, . . . , an + bn) ≥M r(a1, . . . , an) +M r(b1, . . . , bn) .

Equality holds if and only if (a1, . . . , an) and (b1, . . . , bn) are propor-
tional, or r ≤ 0 and ak = bk = 0 for some k.

15. Radon’s Inequality. For real numbers p > 0, x1, . . . , xn ≥ 0,
a1, . . . , an > 0, the following inequality holds:

n∑
k=1

xp+1
k

apk
≥ (
∑n

k=1 xk)
p+1

(
∑n

k=1 ak)
p
.

Remark: Radon’s Inequality follows from Hölder’s |u·v| ≤ ‖u‖p+1‖v‖q,
with u = (x1/a

1/q
1 , . . . , xn/a

1/q
n ), v = (a

1/q
1 , . . . , a

1/q
n ), 1

p+1
+ 1

q
= 1.

16. Rearrangement Inequality. For every choice of real numbers
x1 ≤ · · · ≤ xn and y1 ≤ · · · ≤ yn, and any permutation xσ(1), . . . , xσ(n)
of x1, . . . , xn, we have

xny1 + · · ·+ x1yn ≤ xσ(1)y1 + · · ·+ xσ(n)yn ≤ x1y1 + · · ·+ xnyn .

If the numbers are different, e.g., x1 < · · · < xn and y1 < · · · < yn, then
the lower bound is attained only for the permutation which reverses the
order, i.e. σ(i) = n − i + 1, and the upper bound is attained only for
the identity, i.e. σ(i) = i, for i = 1, . . . , n.

17. Schur. If x, y, x are positive real numbers and k is a real number
such that k ≥ 1, then

xk(x− y)(x− z) + yk(y − x)(y − z) + zk(z − x)(z − y) ≥ 0 .

For k = 1 the inequality becomes

x3 + y3 + z3 + 3xyz ≥ xy(x+ y) + yz(y + z) + zx(z + x) .
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18. Schwarz. (Hölder with p = q = 2.)

|u · v| ≤ ‖u‖2‖v‖2 ,∣∣∣ n∑
i=1

aibi

∣∣∣2 ≤ ( n∑
i=1

|ai|2
)( n∑

i=1

|bi|2
)
,

∣∣∣∣∫ b

a

f(x)g(x) dx

∣∣∣∣2 ≤ (∫ b

a

|f(x)|2 dx
)(∫ b

a

|g(x)|2 dx
)
.

19. Strong Mixing Variables Method. We use the definition of r-
mean given in subsection 13. Let F : I ⊂ Rn → R be a symmetric,
continuous function satisfying the following: for all (x1, x2, . . . , xn) ∈ I
such that 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn, F (x1, x2, . . . , xn) ≥ F (t, x2, . . . , xn−1, t),
where t = M r(x1, xn). Then:

F (x1, x2, . . . , xn) ≥ F (x, x, . . . , x) ,

where x = M r(x1, x2, . . . , xn).

An analogous result holds replacing ≥ with ≤.

20. Weighted Power Means Inequality. Let w1, . . . , wn be posi-
tive real numbers such that w1 + · · · + wn = 1. Let r be a non-zero
real number. We define the rth weighted power mean of non-negative
numbers a1, . . . , an as follows:

M r
w(a1, . . . , an) =

(
n∑
i=1

wia
r
i

)1/r

.

As r → 0 the rth weighted power mean tends to:

M0
w(a1, . . . , an) =

( n∏
i=1

awi
i

)
.

which we call 0th weighted power mean. If wi = 1/n we get the ordi-
nary rth power means.

Then for any real numbers r, s such that r < s, the following inequality
holds:

M r
w(a1, . . . , an) ≤M s

w(a1, . . . , an) .

(If r, s 6= 0 note convexity of xs/r and recall Jensen’s inequality.)
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1. Various Results

1. Convex Function Superadditivity. If f : [0, b) → R is convex,
and f(0) = 0, then f is superadditive in [0, b), i.e., if x, y, x+y ∈ [0, b),
then f(x+ y) ≥ f(x) + f(y).

Proof : If 0 ≤ λ ≤ 1, then by convexity:

f(λx) = f(λx+ (1− λ)0) ≤ λf(x) + (1− λ)f(0) = λf(x) ,

hence

f(x) = f

(
x

x+ y
(x+ y)

)
≤ x

x+ y
f(x+ y)

f(y) = f

(
y

x+ y
(x+ y)

)
≤ y

x+ y
f(x+ y) ,

and adding both inequalities: f(x) + f(y) ≤ f(x+ y). �
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