
A FEW OLD PROBLEMS

(Last updated: November 11, 2022)

Remark. This is a list of Math problems (in no particular order) that I have found in the
past. They have mainly historical interest for me. Not all of them are hard, but some may
be challenging, or require some ingenious idea for their solution, or have a surprising or
unexpected solution. There are also a few open questions among them.—Miguel A. Lerma

1. The Great Theorem of Humpty-Dumpty.1 Assume that in the equation of
Fermat’s Last Theorem we replace addition with numeral concatenation (in base 10),
here represented ’⊕’:

xn ⊕ yn = zn

where x, y and z must be positive integers. For instance (2, 3, 7) would be a solution
for n = 2, because 22⊕32 = 4⊕9 = 49 = 72. Other solutions are 42⊕32 = 169 = 132,
42 ⊕ 32 = 1681 = 412, 62 ⊕ 12 = 361 = 192, 62 ⊕ 102 = 36100 = 1902, etc. A solution
will be called primitive if y and z are not multiples of 10 (e.g., all solutions shown
above except the last one are primitive). Prove that for n = 2 the above equation has
infinitely many primitive solutions. (Insights into the problem for n > 2 and in bases
different from 10 are also encouraged.)

Generalization of case n = 2: Prove that for every positive integer x there are
infinitely many positive integers y, z not multiple of 10 such that

x⊕ y2 = z2 .

2. Rational distances on the unit circle. Prove that there are infinitely many points
on the unit circle x2 + y2 = 1 such that the distance between any two of them is a
rational number.

3. Half of a ball. (This problem is inspired by the one about a goat tied with a rope
to the border of a circular grass field so that it can eat exactly half of the grass.) Let
B and B′ two n-dimensional balls such that the radius of B is 1, the center of B′ is
in the boundary of B and the (n-dimensional) volume of the intersection of B and B′

is half the volume of B. Let rn be the radius of B′. Find the limit of rn as n→∞.2

1Proposed in Carrollia magazine No. 19 (Dec. 1988) by Josep Maŕıa Albaigès; a solution (by me) appeared
in Carrollia magazine No. 20 (Mar. 1989)—also provided solutions to the problem for cases n = 3 and n = 4.

2A solution to this problems appeared in Marshall Fraser (1984) The Grazing Goat in n Dimen-
sions, The Two-Year College Mathematics Journal, 15:2, 126-134, DOI: 10.1080/00494925.1984.11972761.
Fraser’s proof contained an error that was amended in Mark D. Meyerson (1984) Return of the
Grazing Goat in n Dimensions, The Two-Year College Mathematics Journal, 15:5, 430-432, DOI:
10.1080/00494925.1984.11972829.
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4. Slicing an n-ball. What is the maximum number of parts in which an n-dimensional
ball can be divided by k hyperplanes? How many of them are at the boundary of the
n-ball? What is the maximum number of parts in which an n-sphere (the boundary
of an n+ 1-dimensional ball) can be divided by k hyperplanes?

5. Eventually constant modulo m. Prove that for any two positive integers a and

m, the following sequence is eventually constant modulo m: a, aa, aa
a
, aa

aa

, . . . .

6. Coloring infinite maps. In 1976 Appel and Haken proved that any (finite) planar
map can be colored with 4 colors so that no two regions that share a boundary have
the same color. Prove that the same is true for any planar map with infinitely many
regions.

7. Ackerman’s function. Ackerman’s function A : N × N → N is defined for every
m,n ≥ 0 by the following double recurrence:
(a) A(0, n) = n+ 1 for every n ≥ 0.
(b) A(m, 0) = A(m− 1, 1) if m ≥ 1.
(c) A(m,n) = A(m− 1, A(m,n− 1)) if m,n ≥ 1.

Find close-form formulas (involving any arithmetic operations, powers and iterated
powers) for A(1, n), A(2, n), A(3, n) and A(4, n). Find all other values of A(m,n)
(m ≥ 5) whose decimal representation can be explicitly written in our universe (as-
sume that our universe has 1080 atoms.)

8. Exceptional primes. If m is an integer greater than 1 with some prime factor
different from 2 and 5 then 1/m has a non-terminating periodic decimal representation.
Let l10(m) be the length of the period in the decimal representation of 1/m; e.g.,
1/7 = 0.142857 ⇒ l10(7) = 6, 1/11 = 0.09 ⇒ l10(11) = 2, etc.

1) Prove that if p is a prime number different from 2 and 5, then either
l10(p

2) = p l10(p) or l10(p
2) = l10(p).

2) Since available evidence seems to show that most prime numbers different from
2 and 5 verify l10(p

2) = p l10(p), we will call “exceptional” any such prime if it
verifies the alternative relation l10(p

2) = l10(p). For instance 3 is exceptional
because 1/3 = 0.3 and 1/9 = 0.1, hence l10(3

2) = l10(3) = 1. Find the next
exceptional prime.

3) (May require using a computer) Find the third smallest exceptional prime.3

4) (Open) Find the fourth smallest exceptional prime.

5) According to the Prime Number Theorem the total number of primes in [2, N ]
is asymptotically N/ lnN . Give an educated guess on the number of exceptional
primes that we can expect to find in that interval.

3Solved in Carrollia No. 30
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9. Bags of candies. In a box we have N+1 bags with N candies each (N ≥ 2). The first
bag contains N orange flavored candies, the second one contains N−1 orange flavored
candies and 1 lemon flavored one, the third one contains N − 2 orange flavored and
2 lemon flavored, and so on. We take one bag at random and try one of the candies,
which turns out to be lemon flavored. Then we take a second candy from the same
bag. What is the probability that the second candy is also lemon flavored?

10. Consulting books in a library. In a library that contains N books every day we
choose one of the books at random for consultation, and return it to the shelf. What
is the expected number of days it will take us to consult all the books in the library
at least once?

11. N roulettes. We have N roulettes, all with the same probability p of stopping at
zero. We spin them simultaneously. If any of them stops at zero we keep spinning
only the ones that did not stop at zero. We keep doing the same until all of them
have stopped at zero. What is the expected number of times that we must spin the
roulettes until all of them stop at zero?

12. The round random table. In the border of a perfectly circular piece of wood we
choose N points at random to place legs and make a table. What is the probability
that the table will stand without falling?

13. Throwing pies. A group of initially N people play the following game. Each one
picks another person at random as a target, and at the voice of “now!” they throw
their pies at their selected targets with perfect aim. Each player hit by a pie must
abandon the game; the ones not hit by a pie are called “survivors”. They keep playing
until all of them have been hit or only one survivor remains.

(a) If at a given stage of the game there are n survivors, what is the expected number
of survivors at the next stage?

(b) If at a given stage of the game there are n survivors and 0 ≤ k ≤ n, what is the
probability of having exactly k survivors at the next stage?

(c) (Probably open) Study the asymptotic behavior as N →∞ of the probability of
ending up with one survivor.

Generalize the problem assuming that the players’ aim is not perfect. Assume that
the probability p of hitting the selected target is constant and the same for everybody.

14. John’s PIN. John’s PIN for his teller machine consists of a 6-digit number ’abcdef’.
He has bad memory, but does not want to write it down just in case someone finds
it. So he breaks the number in two 3-digit numbers ’abc’ and ’def’, and with his
pocket calculator finds the quotient abc/def, which he writes down. A few days later
he needs the PIN, and as expected he cannot remember it, but he remembers that he
wrote down the quotient between the two halves of the number in a piece of paper:
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’abc/def= 0.195323246’. So he takes his pocket calculator (with only basic arithmetic
operations and the inversion ’1/x’ key), punches the keys for a few seconds, scratches
some numbers on a piece of paper for a few seconds more and gets the original 6-digit
number. What is that number and how did he find it so quickly?

15. Game of 15. The game of 15 consists of a 4 by 4 square grid with 15 pieces labeled
with the numbers 1 to 15 covering all of the squares of the grid except one (the ’hole’).
Any piece right above, right below, right to the left or right to the right of the hole
can be moved to it, covering the hole and uncovering the square previously occupied
by the piece. The pieces are placed initially in increasing numeric order covering all
the spaces starting at the top row from left to right and from top to bottom, with the
hole at the right bottom corner. Is it possible to move the pieces so that number 1
and 2 are swapped and the rest end up in their initial positions?

16. Irreducible random fraction. What is the probability that a fraction a/b whose
numerator and denominator are chosen at random among all positive integers turns
out to be irreducible? (Assume that a and b are chosen with uniform probability in
the interval [1, N ] and then let N →∞.)

17. Swapping registers.4 I have a (rather primitive) pocket calculator with the following

operation keys: + , − , ∗ , / , = , M+ (add to memory), M− (subtract from

memory), MR (read memory). In order to avoid rounding errors in what follows

I will ignore the multiplication and division keys, so I will work with + , − , = ,

M+ , M− and MR only. Assume that at a given time I have a number ’x’ in the

display and another number ’y’ in memory, and I want to swap them, i.e., using the

keys + , − , = , M+ , M+ and MR I want to end up with ’y’ in the display

and ’x’ in memory. Is there any way to accomplish this?

18. The honest forecaster.5 A forecaster makes predictions on possible outcomes O1,
O2,. . . ,On of a given event (such as tomorrows weather) by assigning probabilities
p1, p2, . . . , pn to them. Find a cheat-proof way to evaluate the accuracy of his/her
predictions. (Note that some evaluation schemes are easy to defeat, for instance
comparing the frequency of past occurrences of each Ok to the probability pk assigned
to it can be defeated by adjusting the predicted probabilities to the frequency of past
occurrences—so the forecaster could pretend to be doing his/her job without actually
forecasting anything.)

19. Series involving e. Find the sum of the following series:

∞∑
n=1

{
e−

(
1 +

1

n

)n}
4Carrollia No. 13, Jun 1987.
5Carollia No. 23.
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20. The pages of a book. The pages of a book with two parts are numbered 1, 2, 3, . . . , N .
The sum of the page numbers of the first part equals the sum of the page numbers of
the second part. How many pages does the book have?

21. Round of prisoners (a.k.a. Josephus problem).6 The director of a prison decides
to free one of the prisoners by the following method. First he arranges all the prisoners
in a circle, then he starts removing every other prisoner from the circle until only one
remains. The last prisoner in the circle is set free. For instance assume that there
are five prisoners numbered 1, 2, 3, 4, 5; then the director starts removing in this order
prisoners 2, 4, 1, 5, so 3 is the last one and is set free. If there are initially N prisoners,
which one will be the lucky one?

22. Almost perfect odd numbers.7 A positive integer is called perfect if the sum
of its positive proper divisors (different from n) equals n. For instance 6 is perfect
because 1 + 2 + 3 = 6. Equivalently n is perfect iff σ(n)/n = 2, where σ(n) = sum of
all positive divisors of n (including n itself). Although the structure of even perfect
numbers is well known, up to this date nobody has ever found an odd perfect number,
nor anybody knows whether an odd perfect number exists. Prove however that there
are odd numbers as close to be perfect as we wish, in the following sense:
(a) For every ε > 0 there is some positive odd number n such that∣∣∣∣σ(n)

n
− 2

∣∣∣∣ < ε .

Technically 2 is called an accumulation point of the set

S = {σ(n)/n | n = 1, 3, 5, . . . } .

(b) Find all accumulation points of S.

23. Modified Nim. This is a modified version of the game of Nim (in the following we
assume that there is an unlimited supply of tokens.) Two players set several piles of
tokens in a row. By turns each of them takes one token from one of the piles and
adds at will as many tokens as he/she wishes to piles placed to the left of the pile
from which the token was taken. Assuming that the game ever finishes, the player
that takes the last token wins.
(a) Prove that, no matter how they play, the game will eventually end after finitely

many steps.
(b) Find a winning strategy.

Do the same for another variant of the game in which the piles are arranged in several
rows (not necessarily with the same number of piles each), and players are also allowed
to add any number of piles with any number of tokens each to rows placed above the
one containing the pile from which the token was taken. Generalize the problem to
n-dimensional arrangements (and solve it).

6Carrollia No. 29.
7Carrollia No. 30.
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24. Increasing and decreasing subsequences. Prove that every sequence a1, a2, . . . , an2+1

of n2 + 1 different numbers contains either an increasing subsequence of length n+ 1
or a decreasing subsequence of length n+ 1.

25. Three-colored plane. Prove that if we color all the points of the plane using three
colors, there are two points with the same color placed at a mutual distance 1.

26. Fermat’s Last Theorem with real exponents. Show that the set of real values
of α such that the equation

xα + yα = zα

has positive integer solutions is dense in R, i.e., every non-empty open interval of real
numbers contains values of α for which the equation shown above has solutions with
x, y, z ∈ Z+.

27. Sums and products of tangents squared. Find the values of the following ex-
pressions (n ≥ 3 odd):

S(n) =

n−3
2∑

k=0

tan2
{

(2k+1)π
2n

}
,

P (n) =

n−3
2∏

k=0

tan2
{

(2k+1)π
2n

}
,

S(n)

P (n)
=

n−3
2∑

k=0

n−3
2∏
l=0
l 6=k

cot2
{

(2l+1)π
2n

}
.

Generalize the result to certain sums of products of tangents or cotangents squared.

28. A binary operation on rationals. Let ◦ be a binary operation defined on rational
numbers with the following properties:
(a) Commutative: a ◦ b = b ◦ a.
(b) Associative: a ◦ (b ◦ c) = (a ◦ b) ◦ c.
(c) Idempotency of zero: 0 ◦ 0 = 0
(d) Distributivity of ’+’ respect to ’◦’: (a ◦ b) + c = (a+ c) ◦ (b+ c).

Prove that the operation is either a ◦ b = max(a, b) or a ◦ b = min(a, b).

29. Sorted Random Numbers. Pick n random numbers x1, x2, ..., xn in the interval
[0, 1] with uniform probability. Let y1 ≤ y2 ≤ · · · ≤ yn be those same numbers sorted
in non-decreasing order. For each k = 1, . . . , n, what is the expected value of yk?

30. Ternary Addition. We define a binary operation ’∗’ on the real numbers so that
for every a, b, c, (a ∗ b) ∗ c = a+ b+ c. Prove that ∗ is +.

31. Candy Jars. In a professional office there are two jars initially filled with 100 candies
each. Every day ten clients come to the office an each of them takes a candy from
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one of the jars chosen at random (or from the only jar with candies if one of them
is empty). If one of the jars gets empty, at the end of the day it is refilled with 100
candies again. What is the expected number of days it will take for both jars to get
empty on the same day?

32. Interpenetrating hypercubes. (Open problem) Find the maximum number of dis-
tinct finite N-volumes bounded by their surfaces in a compound of N interpenetrating
N -dimensional hyper-cubes.8

33. Area of a triangle. In figure 1, given the areas a, b, and c of triangles CFE, AFC,
and DFA respectively, find the area of triangle ABC.

A

B

C

D
E

F
a

b

c

Figure 1

34. A property of powers of arithmetic sequences. Let an an arithmetic sequence,
i.e., there is a fix real number d such that for every n = 0, 1, 2 . . . , we have an+1 =
an + d. Let k be a non-negative integer, and let bn be the number of 1’s in the binary
representation of n, e.g., if n = 6(10 = 110(2 then bn = 2. Prove that

2k+1−1∑
n=0

(−1)bnakn = 0.

8For N = 1 the answer is obviously 1, and for N = 2 it is not hard to see that the answer is 9. It is
conjectured that for N = 3 the answer is 67, the number of cells of the 3-cube Escher’s compound. Prove
the conjecture and generalize.



8 A FEW OLD PROBLEMS

35. The best route to safety. Imagine that you are standing in the middle of a road.
Suddenly, you see a truck (traveling at a constant speed) coming towards you. The
driver is distracted and cannot see you. Your first reaction might be to run directly
towards the side of the road, but that may not be the best strategy. Find the best
path to the curve (running at your maximum, constant speed) in each of the following
cases:

1. You don’t know your distance to the truck but know its speed, and you want to
maximize the distance between you and the truck at the moment you reach the
curb. The path must be a straight line.9

2. You know your distance to the truck but don’t know its speed, so you aim to
avoid the fastest possible truck. The path must be a straight line.9

3.–4. Same as 1.–2. dropping the condition that the path must be a straight line.10

9 Elizabeth Field, Rachael Ivison, Amanda Reyher and Steven Warner, Truck Versus Human: Mathemat-
ics Under Pressure, Coll. Math. J. 45 (2014) 116–120.

10Miguel A. Lerma (2021), Truck Versus Human 2.0: Mathematical Follow-Up Under Increasing Pres-
sure, and How Kepler’s Laws Come to the Rescue, The College Mathematics Journal, 52:1, 22–30, DOI:
10.1080/07468342.2021.1847590.


