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Abstract
Let v» > 0 and integers aq, ..., a, # 0 satisfy

m

> vt =m. (1)

i=1
We prove that every positive integer n admits a finite expansion
¢

t
n = ch,wkf, k1,...,k € Z pairwise distinct, c¢; €1,...,m—1, ch =n.
=1

j=1
(2)
We provide two elementary proofs (a lexicographic maximal-element argument and a
terminating carry process), identify a canonical normal form, and discuss connections
with abelian chip—firing networks and S—expansions. A practical search procedure and
examples (including the golden ratio) are included.

1 Introduction

Dresden and Liu (CMJ Problem 1276) [I] and the solution by the Eagle Problem Solvers [2]
considered the special case m = 2 with

Yyt =2 (a#£D), (3)

showing that every n € N is a sum of n distinct powers of 1. We generalize this to arbitrary
m > 1 under with a; # 0 (the a; not necessarily distinct). Throughout we may assume
¢ > 1; if ¢ < 1 we replace ¢ by 1/¢ and (a;) by (—a;), preserving ().

2 Sketch of proof

The general idea of the proof consists of starting with an expression of the form

n=1+1+--4+1=> ¢ (4)
e i=1

n times
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which may contain m or more repetitions of the same power of v, and then repeatedly
applying a rewriting rule of the form miy* = Y7 ¢*™%. The argument shows that this
process always terminates and leads to a stable configuration in which no exponent appears
m or more times, yielding the desired canonical form. We borrow terminology from related
works such as [3], 4, 5], where similar rewriting procedures are described in the contexts of
abelian networks and S—expansions.

3 A carry rule and configurations

For any k € Z, multiplying by ¥ yields the carry rule
m¢k _ Z ¢k+ai‘ (5)
i=1

A configuration is a finitely supported function x: Z — N; interpret x(k) as the coefficient
(or number of chips) at exponent k. Define its value and chip count by

Val(z) =Y a(k), 0", || =) x(k). (6)

keZ keZ

A topple at k replaces m copies of 1/* by one copy of each F+:
(k) = z(k) —m, k+a)=xk+a)+1(=1,...,m), (7)
leaving other coordinates unchanged. By ([]), toppling preserves value and chip count:
Val(z') = Val(z), || = |z]|. (8)

A configuration is stable if x(k) < m — 1 for all k.

4 Main result

Theorem 1. Assume with a; # 0. For every n € N there exists a stable configuration x
with Val(x) = n and |z| = n. Equivalently, n admits a representation ({2)).

Proof via lexicographic maximal element

Fix n > 0 and consider the nonempty set
Too={(kr,.... k) €Z" : n =) o¢*}. (9)
i=1

Step 1: Upper bounds. From 9% <n we get k; < K := |logn/log| for all i.



Step 2: Lexicographic maximal element exists. Order 7;, lexicographically. Because
each coordinate is bounded above and integers are well-ordered below, there is a maximal
element { = (kl, e kn): choose k; to be the maximal possible first coordinate among tuples
in 7}, then k2 maximal among those with first coordinate kl, and so on.

Step 3: No m-fold repetition in ¢. Suppose some value k appears at least m times in
t. Apply one carry ( . ) to m occurrences of k, replacing them by k+ a4, ..., k+ a,,. Since at
least one a; > 0 (else (1)) fails for ¢» > 1), the resulting tuple is 1ex1cographlcally larger than
t contradiction. Therefore no exponent occurs m times in t.

Step 4: Grouping identical exponents. Writing the multiset of entries of ¢ as distinct
exponents k; with multiplicities ¢; € 1,...,m — 1, we obtain . Since |z| = n for the
associated configuration, >, ¢; = n. [

5 Alternative proof: termination of the carry process
We show that repeatedly applying the carry to any tuple in 7,, with an m-fold repetition
must halt at a tuple with all multiplicities < m — 1.

Proposition 1 (Finiteness of T,). For each n € N and r > 0, the equation r = Y | *i
has only finitely many integer solutions (ki, ..., ky). In particular, T, is finite.

Proof. By induction on n. For n = 1, r = ¢*' has at most one solution k; = logr/log.
Assume true for n. For n + 1, arrange ky > --- > k,,1. Then

log(r/(n+1)) < ko< log r

— 10

log ) = " logey (10)
so ky takes ﬁnitely many Values; for each such &, set ' = r—** > 0 and apply the induction
hypothesis to 7/ = S 74!k O

Lemma 1 (Strict descent of the sum of exponents). Assume additionally ¢» > 1 and .
Then Y " a; < 0. Consequently, a single carry applied to m equal exponents strictly de-
creases the total sum of exponents of the tuple.

Proof. By AM-GM,

1 & m tam)/m
1 = Ezwal > (¢a1 . ‘¢am)1/ _ 77Z)(aﬂ- +am)/ : (11)

i=1

where the inequality is strict since the ¥* are not all equal (the a; are not all the same
because a; # 0 and with all a; equal would force ¢ = 1). As ¢ > 1, implies
a; + -+ + a, < 0. Replacing m occurrences of some k by k + aq,...,k + a,, changes the
sum of entries by >, a; <O0. O

Proposition 2 (Termination). Starting from any tuple in T,,, repeated application of carries
to any position with multiplicity > m terminates after finitely many steps at a tuple in which
all multiplicities are < m — 1.



Proof. By Proposition|[I] T, is finite, so no infinite sequence of distinct tuples is possible. By
Lemma [I} each carry strictly decreases the sum of entries, hence two consecutive tuples are
distinct. Therefore the process halts, and the terminal tuple has no site with multiplicity
> m (otherwise we could carry once more). O

Combining Propositions [I] and [2] yields Theorem [I}

6 Canonical form and uniqueness

Among all tuples in T},, the lexicographically maximal one ¢ (constructed above) is canoni-
cal. Any sequence of carries starting from (0, ..., 0) must terminate, and the terminal tuple’s
multiset of exponents is independent of the order of legal carries (the abelian/commutative
nature of ) Grouping equal exponents gives the unique normalized expansion with coef-
ficients in 0, ..., m — 1; deleting zero coefficients yields .

7 Practical search (algorithm)

Start with the length-n tuple (0,...,0) € T,,. While some value appears > m times, ap-
ply one carry to m of those occurrences. By Proposition [2] this halts in finitely many
steps with all multiplicities < m — 1. Group identical exponents to obtain coefficients
c; €1,...,m— 1 summing to n.

8 Examples

Example 1 (Golden ratio). Let ¢ = (14 v/5)/2. Since ¢* = ¢ + 1, we have ¢p~2 = 2 — ¢
and hence
¢+ ot =2 (m=2, a1 =1, ap =-2). (12)

The carry is 2¢F — ¢*+1 + ¢*=2. For n = 3,

3¢° = (2¢°) + ¢ Gl 2+ = [0 +¢°+672), (13)

which is the canonical form. Another valid (noncanonical) triple is ¢* + ¢ + ¢~
Example 2 (A ternary case). Take ¢ = 2 and (a1, as,a3) = (1,—1,—1). Then
2! 427t 2t =241 +1=3
SO holds with m = 3 and all a; # 0. The carry rule is
328 — Ml 2.0kt

Starting from (0,...,0) € T,, and carrying whenever a site has multiplicity > 3 yields a
stable representation of n with digits in {1,2} and distinct exponents.



Example 3 (Ternary case with distinct exponents). Let (ay,as,a3) = (1,—1,—2) and solve

Pl4ep~ 4472 = 3 for ¢p > 1. Multiplying by 1?2 gives 3 —3¢? ++1 = (p—1)(¢*—2¢—1) =
0,50 ¢ =14 /2 > 1 works. Thus

Py YT =3 (P =1+V2).

The carry rule is
3,1/}]’9 N warl + wkfl + wk72

with all three shifts distinct and nonzero. For instance,
3O =t + T+ A o T T Y, Y s gt T T 290

Example 4 (Representation of 7 for ¢ = 14 1/2). For the ternary case with (ay,az,a3) =
(1,—1,—2) and @ = 1 + /2, the relation ' + ¢~ +1~2 = 3 yields the carry rule

3wk — wk—f—l_l_wk—l_'_l/}k—g

Step 1. Starting configuration. For n = 7 we begin with 7¢° = (3¢°) + (3¢°) + ¢° and
apply the carry rule to each block of three equal powers:

W — W YT YT+ W YT YT + 0

Collecting equal exponents gives

Step 2. Stabilization. All coefficients are < m — 1 = 2, so the configuration is already
stable. Hence the canonical representation is

T=20 + 90+ 207 4272, Y =14+V2

9 Remarks and connections

Remark 1 (Zero exponents). If some a; = 0, then removing all zero exponents reduces
to Zaﬁéo Y% = m — r, where r is the count of zeros. The cases r € m,m — 1 are trivial; for
0 < r <m — 2 the theorem follows from the case m' =m — r.

Remark 2 (Beta-expansions). Let Q(T) = >"1" | T% —m. Then Q(¢)) = 0 is a finite relation
for 1 in base 9. The carry rule corresponds to digit normalization in S—expansions with
a finite “word” for 1; the chip count |z| being invariant explains the constraint ) ¢; = n.

Remark 3 (Abelian networks). Toppling operators commute and preserve @; the exis-
tence and uniqueness of the stabilized state parallels the confluence/least-action principles
in abelian chip—firing networks.



10 Open Questions

The results presented here guarantee the existence and uniqueness of a canonical represen-
tation for each integer n under the relation > . )% = m. Several natural questions remain
open:

1. Counting representations. Beyond the canonical (stabilized) form, an integer n

may admit other valid representations of the form n =Y, ;)" with ¢; € {1,...,m —
1}. Describing or bounding this number as a function of n is an open combinatorial
problem.

2. Structure of noncanonical representations. When multiple expansions exist, can
one classify them via local transformations (inverse carries) or by a graph structure
relating equivalent configurations?

3. Asymptotic and statistical questions. For large n, how are the exponents k;
distributed in the canonical form? Does their range grow logarithmically, linearly, or
in some other predictable way?

4. Computational aspects. What is the complexity of computing the canonical rep-
resentation of n? Can efficient algorithms or closed-form recurrences be obtained for
specific values of ¢?

These directions connect the present work with combinatorial number theory, dynamical
systems, and the study of S—expansions and abelian networks, offering a broad range of
possibilities for further exploration.
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