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Abstract

Let ψ > 0 and integers a1, . . . , am ̸= 0 satisfy

m∑
i=1

ψai = m. (1)

We prove that every positive integer n admits a finite expansion

n =
t∑

j=1

cj , ψ
kj , k1, . . . , kt ∈ Z pairwise distinct, cj ∈ 1, . . . ,m− 1,

t∑
j=1

cj = n.

(2)
We provide two elementary proofs (a lexicographic maximal-element argument and a
terminating carry process), identify a canonical normal form, and discuss connections
with abelian chip–firing networks and β–expansions. A practical search procedure and
examples (including the golden ratio) are included.

1 Introduction

Dresden and Liu (CMJ Problem 1276) [1] and the solution by the Eagle Problem Solvers [2]
considered the special case m = 2 with

ψa + ψb = 2 (a ̸= b), (3)

showing that every n ∈ N is a sum of n distinct powers of ψ. We generalize this to arbitrary
m > 1 under (1) with ai ̸= 0 (the ai not necessarily distinct). Throughout we may assume
ψ > 1; if ψ < 1 we replace ψ by 1/ψ and (ai) by (−ai), preserving (1).

2 Sketch of proof

The general idea of the proof consists of starting with an expression of the form

n = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

=
n∑

i=1

ψ0, (4)
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which may contain m or more repetitions of the same power of ψ, and then repeatedly
applying a rewriting rule of the form mψk =

∑m
i=1 ψ

k+ai . The argument shows that this
process always terminates and leads to a stable configuration in which no exponent appears
m or more times, yielding the desired canonical form. We borrow terminology from related
works such as [3, 4, 5], where similar rewriting procedures are described in the contexts of
abelian networks and β–expansions.

3 A carry rule and configurations

For any k ∈ Z, multiplying (1) by ψk yields the carry rule

mψk =
m∑
i=1

ψk+ai . (5)

A configuration is a finitely supported function x : Z → N; interpret x(k) as the coefficient
(or number of chips) at exponent k. Define its value and chip count by

Val(x) :=
∑
k∈Z

x(k), ψk, |x| :=
∑
k∈Z

x(k). (6)

A topple at k replaces m copies of ψk by one copy of each ψk+ai :

x′(k) = x(k)−m, x′(k + ai) = x(k + ai) + 1 (i = 1, . . . ,m), (7)

leaving other coordinates unchanged. By (5), toppling preserves value and chip count:

Val(x′) = Val(x), |x′| = |x|. (8)

A configuration is stable if x(k) ≤ m− 1 for all k.

4 Main result

Theorem 1. Assume (1) with ai ̸= 0. For every n ∈ N there exists a stable configuration x
with Val(x) = n and |x| = n. Equivalently, n admits a representation (2).

Proof via lexicographic maximal element

Fix n > 0 and consider the nonempty set

Tn :=
{
(k1, . . . , kn) ∈ Zn : n =

n∑
i=1

ψki
}
. (9)

Step 1: Upper bounds. From ψki ≤ n we get ki ≤ K := ⌊log n/ logψ⌋ for all i.
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Step 2: Lexicographic maximal element exists. Order Tn lexicographically. Because
each coordinate is bounded above and integers are well-ordered below, there is a maximal
element t̂ = (k̂1, . . . , k̂n): choose k̂1 to be the maximal possible first coordinate among tuples
in Tn, then k̂2 maximal among those with first coordinate k̂1, and so on.

Step 3: No m-fold repetition in t̂. Suppose some value k appears at least m times in
t̂. Apply one carry (5) to m occurrences of k, replacing them by k+ a1, . . . , k+ am. Since at
least one ai > 0 (else (1) fails for ψ > 1), the resulting tuple is lexicographically larger than
t̂, contradiction. Therefore no exponent occurs m times in t̂.

Step 4: Grouping identical exponents. Writing the multiset of entries of t̂ as distinct
exponents kj with multiplicities cj ∈ 1, . . . ,m− 1, we obtain (2). Since |x| = n for the
associated configuration,

∑
j cj = n.

5 Alternative proof: termination of the carry process

We show that repeatedly applying the carry (5) to any tuple in Tn with an m-fold repetition
must halt at a tuple with all multiplicities ≤ m− 1.

Proposition 1 (Finiteness of Tn). For each n ∈ N and r > 0, the equation r =
∑n

i=1 ψ
ki

has only finitely many integer solutions (k1, . . . , kn). In particular, Tn is finite.

Proof. By induction on n. For n = 1, r = ψk1 has at most one solution k1 = log r/ logψ.
Assume true for n. For n+ 1, arrange k1 ≥ · · · ≥ kn+1. Then

log
(
r/(n+ 1)

)
logψ

≤ k1 <
log r

logψ
, (10)

so k1 takes finitely many values; for each such k1, set r
′ = r−ψk1 > 0 and apply the induction

hypothesis to r′ =
∑n+1

i=2 ψ
ki .

Lemma 1 (Strict descent of the sum of exponents). Assume additionally ψ > 1 and (1).
Then

∑m
i=1 ai < 0. Consequently, a single carry applied to m equal exponents strictly de-

creases the total sum of exponents of the tuple.

Proof. By AM–GM,

1 =
1

m

m∑
i=1

ψai >
(
ψa1 · · ·ψam

)1/m
= ψ(a1+···+am)/m, (11)

where the inequality is strict since the ψai are not all equal (the ai are not all the same
because ai ̸= 0 and (1) with all ai equal would force ψ = 1). As ψ > 1, (11) implies
a1 + · · · + am < 0. Replacing m occurrences of some k by k + a1, . . . , k + am changes the
sum of entries by

∑
i ai < 0.

Proposition 2 (Termination). Starting from any tuple in Tn, repeated application of carries
to any position with multiplicity ≥ m terminates after finitely many steps at a tuple in which
all multiplicities are ≤ m− 1.
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Proof. By Proposition 1, Tn is finite, so no infinite sequence of distinct tuples is possible. By
Lemma 1, each carry strictly decreases the sum of entries, hence two consecutive tuples are
distinct. Therefore the process halts, and the terminal tuple has no site with multiplicity
≥ m (otherwise we could carry once more).

Combining Propositions 1 and 2 yields Theorem 1.

6 Canonical form and uniqueness

Among all tuples in Tn, the lexicographically maximal one t̂ (constructed above) is canoni-
cal. Any sequence of carries starting from (0, . . . , 0) must terminate, and the terminal tuple’s
multiset of exponents is independent of the order of legal carries (the abelian/commutative
nature of (7)). Grouping equal exponents gives the unique normalized expansion with coef-
ficients in 0, . . . ,m− 1; deleting zero coefficients yields (2).

7 Practical search (algorithm)

Start with the length-n tuple (0, . . . , 0) ∈ Tn. While some value appears ≥ m times, ap-
ply one carry (5) to m of those occurrences. By Proposition 2 this halts in finitely many
steps with all multiplicities ≤ m − 1. Group identical exponents to obtain coefficients
cj ∈ 1, . . . ,m− 1 summing to n.

8 Examples

Example 1 (Golden ratio). Let ϕ = (1 +
√
5)/2. Since ϕ2 = ϕ + 1, we have ϕ−2 = 2 − ϕ

and hence
ϕ1 + ϕ−2 = 2 (m = 2, a1 = 1, a2 = −2). (12)

The carry is 2ϕk → ϕk+1 + ϕk−2. For n = 3,

3ϕ0 = (2ϕ0) + ϕ0 (12)−−−→ ϕ1 + ϕ−2 + ϕ0 = ϕ1 + ϕ0 + ϕ−2 , (13)

which is the canonical form. Another valid (noncanonical) triple is ϕ2 + ϕ−3 + ϕ−4.

Example 2 (A ternary case). Take ψ = 2 and (a1, a2, a3) = (1,−1,−1). Then

21 + 2−1 + 2−1 = 2 + 1
2
+ 1

2
= 3,

so (1) holds with m = 3 and all ai ̸= 0. The carry rule is

3 2k −→ 2k+1 + 2 · 2k−1.

Starting from (0, . . . , 0) ∈ Tn and carrying whenever a site has multiplicity ≥ 3 yields a
stable representation of n with digits in {1, 2} and distinct exponents.
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Example 3 (Ternary case with distinct exponents). Let (a1, a2, a3) = (1,−1,−2) and solve
ψ1+ψ−1+ψ−2 = 3 for ψ > 1. Multiplying by ψ2 gives ψ3−3ψ2+ψ+1 = (ψ−1)(ψ2−2ψ−1) =
0, so ψ = 1 +

√
2 > 1 works. Thus

ψ1 + ψ−1 + ψ−2 = 3 (ψ = 1 +
√
2).

The carry rule is
3ψk −→ ψk+1 + ψk−1 + ψk−2,

with all three shifts distinct and nonzero. For instance,

3ψ0 → ψ1 + ψ−1 + ψ−2, 4ψ0 → ψ1 + ψ−1 + ψ−2 + ψ0, 5ψ0 → ψ1 + ψ−1 + ψ−2 + 2ψ0.

Example 4 (Representation of 7 for ψ = 1 +
√
2). For the ternary case with (a1, a2, a3) =

(1,−1,−2) and ψ = 1 +
√
2, the relation ψ1 + ψ−1 + ψ−2 = 3 yields the carry rule

3ψk −→ ψk+1 + ψk−1 + ψk−2.

Step 1. Starting configuration. For n = 7 we begin with 7ψ0 = (3ψ0)+ (3ψ0)+ψ0 and
apply the carry rule to each block of three equal powers:

7ψ0 −→ (ψ1 + ψ−1 + ψ−2) + (ψ1 + ψ−1 + ψ−2) + ψ0.

Collecting equal exponents gives

x(1) = 2, x(0) = 1, x(−1) = 2, x(−2) = 2.

Step 2. Stabilization. All coefficients are ≤ m − 1 = 2, so the configuration is already
stable. Hence the canonical representation is

7 = 2ψ1 + ψ0 + 2ψ−1 + 2ψ−2, ψ = 1 +
√
2.

9 Remarks and connections

Remark 1 (Zero exponents). If some ai = 0, then removing all zero exponents reduces (1)
to

∑
ai ̸=0 ψ

ai = m− r, where r is the count of zeros. The cases r ∈ m,m− 1 are trivial; for
0 < r ≤ m− 2 the theorem follows from the case m′ = m− r.

Remark 2 (Beta-expansions). Let Q(T ) =
∑m

i=1 T
ai−m. Then Q(ψ) = 0 is a finite relation

for 1 in base ψ. The carry rule (5) corresponds to digit normalization in β–expansions with
a finite “word” for 1; the chip count |x| being invariant explains the constraint

∑
cj = n.

Remark 3 (Abelian networks). Toppling operators commute and preserve (6); the exis-
tence and uniqueness of the stabilized state parallels the confluence/least-action principles
in abelian chip–firing networks.
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10 Open Questions

The results presented here guarantee the existence and uniqueness of a canonical represen-
tation for each integer n under the relation

∑m
i=1 ψ

ai = m. Several natural questions remain
open:

1. Counting representations. Beyond the canonical (stabilized) form, an integer n
may admit other valid representations of the form n =

∑
i ciψ

ki with ci ∈ {1, . . . ,m−
1}. Describing or bounding this number as a function of n is an open combinatorial
problem.

2. Structure of noncanonical representations. When multiple expansions exist, can
one classify them via local transformations (inverse carries) or by a graph structure
relating equivalent configurations?

3. Asymptotic and statistical questions. For large n, how are the exponents ki
distributed in the canonical form? Does their range grow logarithmically, linearly, or
in some other predictable way?

4. Computational aspects. What is the complexity of computing the canonical rep-
resentation of n? Can efficient algorithms or closed-form recurrences be obtained for
specific values of ψ?

These directions connect the present work with combinatorial number theory, dynamical
systems, and the study of β–expansions and abelian networks, offering a broad range of
possibilities for further exploration.
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