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Abstract

The classical Four Color Theorem asserts that every finite planar map can be col-
ored with four colors so that adjacent regions receive different colors. In this note
we present three arguments showing that the result extends to certain infinite planar
maps: (1) a purely graph–theoretic proof based on König’s Infinity Lemma, (2) a topo-
logical compactness argument using Tychonoff’s theorem, and (3) a model–theoretic
compactness proof. We also discuss the role of local finiteness and comment on the
algorithmic and computability aspects of these extensions.

1 The setting

A planar graph is locally finite if each vertex has finite degree. A (possibly infinite) planar
map corresponds to such a graph if every region touches only finitely many others. We wish
to show that the Four Color Theorem (4CT) for finite graphs implies that every locally finite
planar graph admits a proper 4-coloring.

2 Graph–theoretic proof via König’s Lemma

Theorem 1. Every locally finite planar graph is 4-colorable.

Proof. Let G = (V,E) be a planar graph in which every vertex has finite degree. Assume G
is connected. Fix a root vertex v0 ∈ V , and for each integer n ≥ 0 define

Sn = { v ∈ V : dist(v0, v) ≤ n }.

Because G is locally finite, each Sn is finite. Let Gn denote the finite induced subgraph
on Sn.

By the finite Four Color Theorem, each Gn admits at least one proper 4-coloring. Define
the coloring tree T whose level Ln consists of all proper 4-colorings of Gn, and in which
cn+1 ∈ Ln+1 is adjacent to cn ∈ Ln when cn+1 ↾Sn= cn. Each Ln is nonempty, so T is infinite,
and each node has finitely many children (because the extension to Sn+1 involves finitely
many vertices). Thus T is an infinite, finitely branching tree.

1



By König’s Infinity Lemma, such a tree has an infinite branch

c0 ≺ c1 ≺ c2 ≺ · · · , cn+1 ↾Sn= cn.

Define c(v) = cn(v) for any n with v ∈ Sn. This is well defined and yields a proper 4-coloring
of G, since every edge lies within some finite Gn.

If G is disconnected, color each component independently.

Remark. Local finiteness is essential: without it, some vertex might have infinitely many
neighbors, and the coloring tree could branch infinitely, invalidating König’s lemma.

3 Topological compactness proof

Let C = {1, 2, 3, 4}V be the set of all colorings of V . Endow {1, 2, 3, 4} with the discrete
topology and C with the product topology. By Tychonoff’s theorem, C is compact.

For each edge uv ∈ E define

Auv = { f ∈ C : f(u) ̸= f(v) }.

Each Auv is clopen, hence closed. If F ⊆ E is finite, then the subgraph spanned by the
endpoints of F is finite and planar, so

⋂
uv∈F Auv ̸= ∅ (by the finite Four Color Theorem).

The family {Auv}uv∈E thus has the finite intersection property, and compactness gives⋂
uv∈E

Auv ̸= ∅.

Any f in this intersection is a proper 4-coloring of G.

4 Model–theoretic compactness proof

In a first–order language with constants for vertices and unary predicates C1, . . . , C4 rep-
resenting the four colors, include axioms stating: each vertex has exactly one color, and
adjacent vertices have distinct colors. Every finite subset of this theory corresponds to a
finite planar graph, hence has a model by the finite 4CT. By the Compactness Theorem of
first–order logic, the entire theory has a model, yielding a 4-coloring of G.

5 Algorithmic and computability aspects

Among the three arguments, the proof based on König’s Infinity Lemma carries the most
constructive information. If one can systematically enumerate the layers Sn and effectively
compute at least one proper 4-coloring of each finite Gn (as the finite 4CT is constructive in
principle), then the branch guaranteed by König’s lemma can be generated step by step.

In particular:

• Given a computable planar embedding and adjacency structure, one can compute
S0, S1, . . . by breadth–first search.
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• At each stage, one can compute all 4-colorings of Gn or select one by any deterministic
extension rule compatible with some future extension (backtracking if necessary).

• If G is infinite but countable and locally finite, this yields a computable infinite sequence
of compatible partial colorings whose union is a total coloring.

However, the process is not uniformly computable in general: there is no recursive bound
on the stage at which conflicts might appear, and for non–locally finite graphs or uncountable
embeddings the construction may fail. Thus the theorem is not algorithmic in the strict sense,
but it does provide a constructive schema that can color any specific computably presented
infinite planar graph.

6 Historical note

König’s Infinity Lemma first appeared in 1927 as a bridge between finite and infinite combi-
natorial reasoning. Its influence extended throughout infinite graph theory and compactness
methods in logic. The idea of extending finite graph colorings to the infinite case through
compactness was developed independently by de Bruijn and Erdős (1951), who proved that if
every finite subgraph of an infinite graph is k-colorable, then the entire graph is k-colorable.

The finite Four Color Theorem was finally proved by Appel and Haken (1977), following
over a century of effort, and later confirmed and simplified by Robertson, Sanders, Seymour,
and Thomas (1997). Although their proofs are computer-assisted, the logical structure of
the argument ensures that each finite planar graph (and therefore each finite subgraph of a
planar map) is effectively 4-colorable.

The convergence of these ideas, finitary combinatorics (König), logical compactness
(de Bruijn–Erdős), and computer verification (Appel–Haken, Robertson–Thomas), illus-
trates a remarkable unity: the finitary Four Color Theorem entails its infinite analogue
through the general principles of compactness and the existence of consistent extensions of
partial colorings.

6.1 Summary

• Appel–Haken (1977) and Robertson–Seymour–Thomas (1997) are the definitive proofs
of the finite Four Color Theorem.

• König (1927) is the original source of the Infinity Lemma.

• de Bruijn–Erdős (1951) provides the compactness-style extension to infinite graphs.

• Tychonoff (1930) is for the compactness argument in topology.

• Chang–Keisler (1973) gives the logical compactness theorem reference.

• Diestel (2024) (or 5th ed., 2017) gives modern graph-theoretic context and proofs.

• Halin (1964) is a classical reference for infinite graph theory.

• Soifer (2009) is a readable historical/expository source connecting all these strands.
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