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Introduction

Here we examine a problem, its original human-provided solution, an AI-provided
solution, and a new version of the original solution after being revised by the AI as-
sistant. The AI model used was ChatGTP-5.

Problem and Original Solution

Problem. Prove that there are infinitely many squares not multiple of 10 whose
representation in base 10 can be split into two squares. For instance 72 = 49 can be
split 4|9, where 4 and 9 are squares (4 = 22, 9 = 32); 132 = 169 can be split 16|9,
again two squares, etc. (we exclude multiples of 10 in order to avoid trivial answers
like the infinite sequence 49 = 4|9, 4900 = 4|900, 490000 = 4|90000, etc.).

Original Solution. The fact that the decimal representation of a square z2 (not a
multiple of 10) is the concatenation of two squares x2 and y2 can be expressed with
the following system of equation and inequality:

(1)
10nx2 + y2 = z2

10n−1 < y2 < 10n ,

where x, y, z, n must be positive integers and y and z are not multiple of 10. So we
need to prove that (1) has infinitely many solutions. In fact we will prove more,
namely that for any given positive integer x, (1) has infinitely many solutions. So in
the following we assume that x is any fix given positive integer.

We start by rewriting the equation in the following way:

10nx2 = z2 − y2 = (z + y)(z − y).

Since the left hand side is even, y and z must have the same parity, so the two
factors on the right must be even and we can write z + y = 2p, z − y = 2q for some
positive integers p and q. Then we have z = p + q, y = p − q, and 10nx2 = 4pq, so
q = 10nx2/(4p). Hence the inequality can be written like this:

10(n−1)/2 < p− 10nx2

4p
< 10n/2 .
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The expression f(p) = p − 10nx2/(4p) is an increasing function of p, and verifies
f(10n/2b1/2) = 10(n−1)/2 and f(10n/2b2/2) = 10n/2, where

b1 = 1/
√
10 +

√
1/10 + x2 and b2 = 1 +

√
1 + x2 .

So the inequality becomes

10n/2

2
b1 < p <

10n/2

2
b2 .

Taking decimal logarithms we get
n

2
+ log10 b1 − log10 2 < log10 p <

n

2
+ log10 b2 − log10 2

or equivalently
n < 2 log10 p+ α < n+ β ,

where, α = 2 log10 (2/b1), β = 2 log10(b2/b1). We note that α and β depend only on
x, but not on p or n, and also that β > 0. Also recall that 4p must be a divisor of
10nx2, and p ± q should not be a multiple of 10. These conditions are met if we set
n > 2 and p = 5k for some 0 ≤ k < n. Then the inequality becomes

n < 2k log10 5 + α < n+ β ,

or equivalently
n = ⌊2k log10 5 + α⌋ ,
0 < {{2k log10 5 + α}} < β ,

where ⌊t⌋ = integer part of t, {{t}} = t−⌊t⌋ = fractional part of t. Since 2 log10 5 > 1,
the condition k < n will be satisfied for every k large enough. On the other hand
since the integer multiples of an irrational number are dense modulo 1, and 2 log10 5 is
indeed irrational, we have that the fractional part of 2k log10 5 is in (0, β) for infinitely
many values of k. So since all the conditions are satisfied for infinitely many values
of k, we have that (1) has infinitely many solutions.

The argument used here can be used to search numerically for specific solutions of (1).
The idea is to pick any positive integer x and assign values 1, 2, 3, . . . to k checking
whether the following conditions are verified:

n = ⌊2k log10 5 + α⌋ > k ,

0 < {{2k log10 5 + α}} < β ,

Example: First we pick any positive value for x, say x = 1. Next we compute
2 log10(5) = 1.397940008 . . . , α = 0.3317713906 . . . , β = 0.4952627696 . . . . Finally
we search for values of k such that

n = ⌊1.397940008k + 0.3317713906⌋ > k ,

0 < {{1.397940008k + 0.3317713906}} < 0.4952627696 .

For instance, for k = 2 we have 1.397940008k+0.3317713906 = 3.127651407, so k = 2
satisfies the conditions, yielding the solution n = 3, p = 52 = 25, q = 103/(4·25) = 10,
y = 25 − 10 = 15, z = 25 + 10 = 35. So y2 = 225, z2 = 1225. Hence 352 = 1225 =
1|225 can be split into 1 = 12 and 225 = 152.
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Solution Given by the AI Assistant

Theorem 1. There are infinitely many perfect squares (not divisible by 10) whose
base–10 expansion can be split into two consecutive blocks, each of which is a perfect
square.

Proof. We produce infinitely many examples with a one-digit split at the end. Let
c ∈ {1, 4, 9} be a one-digit square. We seek integers x, y such that

(1) x2 = 10y2 + c.

If (1) holds, then dividing by 10 shows that x2 has quotient y2 and remainder c, hence
its decimal expansion is exactly the concatenation

x2 = digits of y2 | c .

Moreover, because x2 ≡ c (mod 10) with c ∈ {1, 4, 9}, none of these squares is
divisible by 10.

Equation (1) is a Pell-type equation

x2 − 10y2 = c.

Since 192 − 10 · 62 = 1, the unit

α := 19 + 6
√
10 ∈ Z[

√
10]

has norm N(α) = 1. If (x0, y0) is any integer solution to x2−10y2 = c, then for every
t ≥ 0 the pair (xt, yt) defined by

xt + yt
√
10 = (x0 + y0

√
10)α t

also satisfies x2
t − 10y2t = c (norms multiply). Thus each initial solution produces an

infinite family.

We now give one seed for each c ∈ {1, 4, 9}:
c = 1 : (x0, y0) = (19, 6), 192 − 10 · 62 = 1;

c = 4 : (x0, y0) = (2, 0), 22 − 10 · 02 = 4;

c = 9 : (x0, y0) = (7, 2), 72 − 10 · 22 = 9.

Therefore each choice of c yields infinitely many solutions to (1), hence infinitely
many squares with a split into two squares.

For explicit recurrences, note that

(x+ y
√
10)α = (19x+ 60y) + (6x+ 19y)

√
10,

so from any solution (x, y) to x2 − 10y2 = c we obtain a new one (x′, y′) via

(2) x′ = 19x+ 60y, y′ = 6x+ 19y.

Iterating (2) gives an infinite sequence of examples.
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Examples.

◦ c = 9: (x, y) = (7, 2) 7→ (253, 80) 7→ (9607, 3038) 7→ · · ·
72 = 49 = 4 | 9, 2532 = 64009 = 6400 | 9, 96072 = 92,294,449 = 9,229,444 | 9.

◦ c = 4: (x, y) = (2, 0) 7→ (38, 12) 7→ (1442, 456) 7→ · · ·
382 = 1444 = 144 | 4, 14422 = 2,079,364 = 207,936 | 4.

◦ c = 1: (x, y) = (19, 6) 7→ (721, 228) 7→ · · ·
192 = 361 = 36 | 1, 7212 = 519,841 = 51,984 | 1.

Each listed square ends in 1, 4, or 9, hence none is a multiple of 10. This completes
the proof. □

Remarks. We notice the following:

(1) The AI proof uses an algebraic approach, while the original used a density
argument based in the Kronecker–Weyl equidistribution theorem.

(2) While the AI solution solves the problem as stated, the original solution pro-
vides a stronger result, namely that there are infinitely many examples with
any prescribed left block x2, which is strictly stronger than the Pell-based
“last-digit block” constructions. The AI assistant pointed out after revision
that that the strengthening is worth calling out in the statement.

(3) The AI assistant made a few suggestions (reflected in the revised solution
below).
(a) State the “strong” result up front.
(b) Add the one-line derivative for f ′(p).
(c) Spell out the “not multiple of 10” check once.
(d) A few tiny wording/LATEX nits.
(e) Optional: you don’t actually need logs; equivalently, you can write n =

⌊2 log10 p + α⌋ and demand 0 < {{2k log10 5 + α}} < β then substitute
p = 5k. The log step is fine as is, though.
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Revised Solution

Suppose the decimal expansion of a square z2 can be written as the concatenation of
two smaller squares x2 and y2. This is equivalent to the system

(1)
z2 = 10nx2 + y2,

10n−1 < y2 < 10n,

where x, y, z, n are positive integers and y, z are not divisible by 10. We shall prove
that (1) has infinitely many solutions. In fact, for any fixed x ≥ 1 there are infinitely
many such solutions.

Step 1. Factorization. Rewriting the first equation,

10nx2 = z2 − y2 = (z + y)(z − y).

Since 10nx2 is even, z and y have the same parity. Thus we may set

z + y = 2p, z − y = 2q,

with p, q ∈ Z>0. Then z = p+ q, y = p− q, and

4pq = 10nx2.

Hence

q =
10nx2

4p
, y = p− q = f(p).

Step 2. Inequality. The condition on y2 is equivalent to

10(n−1)/2 < f(p) < 10n/2, f(p) = p− 10nx2

4p
.

Note that f is strictly increasing since

f ′(p) = 1 +
10nx2

4p2
> 0.

Step 3. Scaling. Let p = 10n/2

2
b. Then

f(p) = 10n/2 · b
2 − x2

2b
.

The inequalities f(p) = 10(n−1)/2 and f(p) = 10n/2 yield two constants

b1 =
1√
10

+
√

1
10

+ x2, b2 = 1 +
√
1 + x2,

such that the condition on p is equivalent to

10n/2

2
b1 < p <

10n/2

2
b2.

Step 4. Logarithmic formulation. Taking base–10 logarithms, we obtain

n < 2 log10 p+ α < n+ β,
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where
α = 2 log10

(
2
b1

)
, β = 2 log10

(
b2
b1

)
> 0.

Step 5. Choice of p. Choose p = 5k with 0 ≤ k < n. Then

n = ⌊2k log10 5 + α⌋, 0 < {2k log10 5 + α} < β,

where {t} denotes the fractional part. Since 2 log10 5 > 1, the condition k < n holds
for all large k. Because 2 log10 5 is irrational, the sequence {2k log10 5} is dense modulo
1. Thus the inequality above is satisfied for infinitely many k.

Step 6. Not multiples of 10. From 4pq = 10nx2 with p = 5k we have

q = 2n−25n−kx2.

So q is even, p is odd, hence y = p− q and z = p+ q are odd. Thus neither y nor z is
divisible by 2. If k ≥ 1, then p, q are multiples of 5, hence y, z ≡ 0 (mod 5) but not
(mod 10). If k = 0, then p ≡ ±1 (mod 5) while q ≡ 0 (mod 5), so again y, z are not
multiples of 5. Therefore in all cases y, z are not divisible by 10.

Step 7. Example. Take x = 1. Then

2 log10 5 ≈ 1.39794, α ≈ 0.33177, β ≈ 0.49526.

For k = 2 we obtain n = 3, p = 25, q = 10, so y = 15, z = 35. Hence

352 = 1225 = 1 | 225,
which is the concatenation of 12 and 152.

Conclusion. Thus for each fixed x there exist infinitely many solutions (n, y, z) to
(1), giving infinitely many squares not divisible by 10 whose decimal expansion splits
into two squares.
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