

SPLIT SQUARES

MIGUEL A. LERMA

August 29, 2025

INTRODUCTION

Here we examine a problem, its original human-provided solution, an AI-provided solution, and a new version of the original solution after being revised by the AI assistant. The AI model used was ChatGTP-5.

PROBLEM AND ORIGINAL SOLUTION

Problem. Prove that there are infinitely many squares not multiple of 10 whose representation in base 10 can be split into two squares. For instance $7^2 = 49$ can be split $4|9$, where 4 and 9 are squares ($4 = 2^2$, $9 = 3^2$); $13^2 = 169$ can be split $16|9$, again two squares, etc. (we exclude multiples of 10 in order to avoid trivial answers like the infinite sequence $49 = 4|9$, $4900 = 4|900$, $490000 = 4|90000$, etc.).

Original Solution. The fact that the decimal representation of a square z^2 (not a multiple of 10) is the concatenation of two squares x^2 and y^2 can be expressed with the following system of equation and inequality:

$$(1) \quad \begin{aligned} 10^n x^2 + y^2 &= z^2 \\ 10^{n-1} < y^2 &< 10^n, \end{aligned}$$

where x, y, z, n must be positive integers and y and z are not multiple of 10. So we need to prove that (1) has infinitely many solutions. In fact we will prove more, namely that for any given positive integer x , (1) has infinitely many solutions. So in the following we assume that x is any fix given positive integer.

We start by rewriting the equation in the following way:

$$10^n x^2 = z^2 - y^2 = (z + y)(z - y).$$

Since the left hand side is even, y and z must have the same parity, so the two factors on the right must be even and we can write $z + y = 2p$, $z - y = 2q$ for some positive integers p and q . Then we have $z = p + q$, $y = p - q$, and $10^n x^2 = 4pq$, so $q = 10^n x^2 / (4p)$. Hence the inequality can be written like this:

$$10^{(n-1)/2} < p - \frac{10^n x^2}{4p} < 10^{n/2}.$$

The expression $f(p) = p - 10^n x^2 / (4p)$ is an increasing function of p , and verifies $f(10^{n/2} b_1 / 2) = 10^{(n-1)/2}$ and $f(10^{n/2} b_2 / 2) = 10^{n/2}$, where

$$b_1 = 1/\sqrt{10} + \sqrt{1/10 + x^2} \quad \text{and} \quad b_2 = 1 + \sqrt{1 + x^2}.$$

So the inequality becomes

$$\frac{10^{n/2}}{2} b_1 < p < \frac{10^{n/2}}{2} b_2.$$

Taking decimal logarithms we get

$$\frac{n}{2} + \log_{10} b_1 - \log_{10} 2 < \log_{10} p < \frac{n}{2} + \log_{10} b_2 - \log_{10} 2$$

or equivalently

$$n < 2 \log_{10} p + \alpha < n + \beta,$$

where, $\alpha = 2 \log_{10} (2/b_1)$, $\beta = 2 \log_{10} (b_2/b_1)$. We note that α and β depend only on x , but not on p or n , and also that $\beta > 0$. Also recall that $4p$ must be a divisor of $10^n x^2$, and $p \pm q$ should not be a multiple of 10. These conditions are met if we set $n > 2$ and $p = 5^k$ for some $0 \leq k < n$. Then the inequality becomes

$$n < 2k \log_{10} 5 + \alpha < n + \beta,$$

or equivalently

$$n = \lfloor 2k \log_{10} 5 + \alpha \rfloor,$$

$$0 < \{2k \log_{10} 5 + \alpha\} < \beta,$$

where $\lfloor t \rfloor$ = integer part of t , $\{t\} = t - \lfloor t \rfloor$ = fractional part of t . Since $2 \log_{10} 5 > 1$, the condition $k < n$ will be satisfied for every k large enough. On the other hand since the integer multiples of an irrational number are dense modulo 1, and $2 \log_{10} 5$ is indeed irrational, we have that the fractional part of $2k \log_{10} 5$ is in $(0, \beta)$ for infinitely many values of k . So since all the conditions are satisfied for infinitely many values of k , we have that (1) has infinitely many solutions.

The argument used here can be used to search numerically for specific solutions of (1). The idea is to pick any positive integer x and assign values $1, 2, 3, \dots$ to k checking whether the following conditions are verified:

$$n = \lfloor 2k \log_{10} 5 + \alpha \rfloor > k,$$

$$0 < \{2k \log_{10} 5 + \alpha\} < \beta,$$

Example: First we pick any positive value for x , say $x = 1$. Next we compute $2 \log_{10}(5) = 1.397940008\dots$, $\alpha = 0.3317713906\dots$, $\beta = 0.4952627696\dots$. Finally we search for values of k such that

$$n = \lfloor 1.397940008k + 0.3317713906 \rfloor > k,$$

$$0 < \{1.397940008k + 0.3317713906\} < 0.4952627696.$$

For instance, for $k = 2$ we have $1.397940008k + 0.3317713906 = 3.127651407$, so $k = 2$ satisfies the conditions, yielding the solution $n = 3$, $p = 5^2 = 25$, $q = 10^3/(4 \cdot 25) = 10$, $y = 25 - 10 = 15$, $z = 25 + 10 = 35$. So $y^2 = 225$, $z^2 = 1225$. Hence $35^2 = 1225 = 1|225$ can be split into $1 = 1^2$ and $225 = 15^2$.

SOLUTION GIVEN BY THE AI ASSISTANT

Theorem 1. *There are infinitely many perfect squares (not divisible by 10) whose base-10 expansion can be split into two consecutive blocks, each of which is a perfect square.*

Proof. We produce infinitely many examples with a one-digit split at the end. Let $c \in \{1, 4, 9\}$ be a one-digit square. We seek integers x, y such that

$$(1) \quad x^2 = 10y^2 + c.$$

If (1) holds, then dividing by 10 shows that x^2 has quotient y^2 and remainder c , hence its decimal expansion is exactly the concatenation

$$x^2 = \overline{\text{digits of } y^2} \mid \overline{c}.$$

Moreover, because $x^2 \equiv c \pmod{10}$ with $c \in \{1, 4, 9\}$, none of these squares is divisible by 10.

Equation (1) is a Pell-type equation

$$x^2 - 10y^2 = c.$$

Since $19^2 - 10 \cdot 6^2 = 1$, the unit

$$\alpha := 19 + 6\sqrt{10} \in \mathbb{Z}[\sqrt{10}]$$

has norm $N(\alpha) = 1$. If (x_0, y_0) is any integer solution to $x^2 - 10y^2 = c$, then for every $t \geq 0$ the pair (x_t, y_t) defined by

$$x_t + y_t\sqrt{10} = (x_0 + y_0\sqrt{10})\alpha^t$$

also satisfies $x_t^2 - 10y_t^2 = c$ (norms multiply). Thus each initial solution produces an infinite family.

We now give one seed for each $c \in \{1, 4, 9\}$:

$$\begin{aligned} c = 1 : \quad & (x_0, y_0) = (19, 6), \quad 19^2 - 10 \cdot 6^2 = 1; \\ c = 4 : \quad & (x_0, y_0) = (2, 0), \quad 2^2 - 10 \cdot 0^2 = 4; \\ c = 9 : \quad & (x_0, y_0) = (7, 2), \quad 7^2 - 10 \cdot 2^2 = 9. \end{aligned}$$

Therefore each choice of c yields infinitely many solutions to (1), hence infinitely many squares with a split into two squares.

For explicit recurrences, note that

$$(x + y\sqrt{10})\alpha = (19x + 60y) + (6x + 19y)\sqrt{10},$$

so from any solution (x, y) to $x^2 - 10y^2 = c$ we obtain a new one (x', y') via

$$(2) \quad x' = 19x + 60y, \quad y' = 6x + 19y.$$

Iterating (2) gives an infinite sequence of examples.

Examples.

- $c = 9$: $(x, y) = (7, 2) \mapsto (253, 80) \mapsto (9607, 3038) \mapsto \dots$
 $7^2 = 49 = 4 \mid 9, \quad 253^2 = 64009 = 6400 \mid 9, \quad 9607^2 = 92,294,449 = 9,229,444 \mid 9.$
- $c = 4$: $(x, y) = (2, 0) \mapsto (38, 12) \mapsto (1442, 456) \mapsto \dots$
 $38^2 = 1444 = 144 \mid 4, \quad 1442^2 = 2,079,364 = 207,936 \mid 4.$
- $c = 1$: $(x, y) = (19, 6) \mapsto (721, 228) \mapsto \dots$
 $19^2 = 361 = 36 \mid 1, \quad 721^2 = 519,841 = 51,984 \mid 1.$

Each listed square ends in 1, 4, or 9, hence none is a multiple of 10. This completes the proof. \square

Remarks. We notice the following:

- (1) The AI proof uses an algebraic approach, while the original used a density argument based in the Kronecker–Weyl equidistribution theorem.
- (2) While the AI solution solves the problem as stated, the original solution provides a stronger result, namely that there are infinitely many examples with any prescribed left block x^2 , which is strictly stronger than the Pell-based “last-digit block” constructions. The AI assistant pointed out after revision that that the strengthening is worth calling out in the statement.
- (3) The AI assistant made a few suggestions (reflected in the revised solution below).
 - (a) State the “strong” result up front.
 - (b) Add the one-line derivative for $f'(p)$.
 - (c) Spell out the “not multiple of 10” check once.
 - (d) A few tiny wording/LaTeX nits.
 - (e) Optional: you don’t actually need logs; equivalently, you can write $n = \lfloor 2 \log_{10} p + \alpha \rfloor$ and demand $0 < \{2k \log_{10} 5 + \alpha\} < \beta$ then substitute $p = 5^k$. The log step is fine as is, though.

REVISED SOLUTION

Suppose the decimal expansion of a square z^2 can be written as the concatenation of two smaller squares x^2 and y^2 . This is equivalent to the system

$$(1) \quad \begin{aligned} z^2 &= 10^n x^2 + y^2, \\ 10^{n-1} &< y^2 < 10^n, \end{aligned}$$

where x, y, z, n are positive integers and y, z are not divisible by 10. We shall prove that (1) has infinitely many solutions. In fact, for any fixed $x \geq 1$ there are infinitely many such solutions.

Step 1. Factorization. Rewriting the first equation,

$$10^n x^2 = z^2 - y^2 = (z + y)(z - y).$$

Since $10^n x^2$ is even, z and y have the same parity. Thus we may set

$$z + y = 2p, \quad z - y = 2q,$$

with $p, q \in \mathbb{Z}_{>0}$. Then $z = p + q$, $y = p - q$, and

$$4pq = 10^n x^2.$$

Hence

$$q = \frac{10^n x^2}{4p}, \quad y = p - q = f(p).$$

Step 2. Inequality. The condition on y^2 is equivalent to

$$10^{(n-1)/2} < f(p) < 10^{n/2}, \quad f(p) = p - \frac{10^n x^2}{4p}.$$

Note that f is strictly increasing since

$$f'(p) = 1 + \frac{10^n x^2}{4p^2} > 0.$$

Step 3. Scaling. Let $p = \frac{10^{n/2}}{2} b$. Then

$$f(p) = 10^{n/2} \cdot \frac{b^2 - x^2}{2b}.$$

The inequalities $f(p) = 10^{(n-1)/2}$ and $f(p) = 10^{n/2}$ yield two constants

$$b_1 = \frac{1}{\sqrt{10}} + \sqrt{\frac{1}{10} + x^2}, \quad b_2 = 1 + \sqrt{1 + x^2},$$

such that the condition on p is equivalent to

$$\frac{10^{n/2}}{2} b_1 < p < \frac{10^{n/2}}{2} b_2.$$

Step 4. Logarithmic formulation. Taking base-10 logarithms, we obtain

$$n < 2 \log_{10} p + \alpha < n + \beta,$$

where

$$\alpha = 2 \log_{10} \left(\frac{2}{b_1} \right), \quad \beta = 2 \log_{10} \left(\frac{b_2}{b_1} \right) > 0.$$

Step 5. Choice of p . Choose $p = 5^k$ with $0 \leq k < n$. Then

$$n = \lfloor 2k \log_{10} 5 + \alpha \rfloor, \quad 0 < \{2k \log_{10} 5 + \alpha\} < \beta,$$

where $\{t\}$ denotes the fractional part. Since $2 \log_{10} 5 > 1$, the condition $k < n$ holds for all large k . Because $2 \log_{10} 5$ is irrational, the sequence $\{2k \log_{10} 5\}$ is dense modulo 1. Thus the inequality above is satisfied for infinitely many k .

Step 6. Not multiples of 10. From $4pq = 10^n x^2$ with $p = 5^k$ we have

$$q = 2^{n-2} 5^{n-k} x^2.$$

So q is even, p is odd, hence $y = p - q$ and $z = p + q$ are odd. Thus neither y nor z is divisible by 2. If $k \geq 1$, then p, q are multiples of 5, hence $y, z \equiv 0 \pmod{5}$ but not $\pmod{10}$. If $k = 0$, then $p \equiv \pm 1 \pmod{5}$ while $q \equiv 0 \pmod{5}$, so again y, z are not multiples of 5. Therefore in all cases y, z are not divisible by 10.

Step 7. Example. Take $x = 1$. Then

$$2 \log_{10} 5 \approx 1.39794, \quad \alpha \approx 0.33177, \quad \beta \approx 0.49526.$$

For $k = 2$ we obtain $n = 3$, $p = 25$, $q = 10$, so $y = 15$, $z = 35$. Hence

$$35^2 = 1225 = 1 \mid 225,$$

which is the concatenation of 1^2 and 15^2 .

Conclusion. Thus for each fixed x there exist infinitely many solutions (n, y, z) to (1), giving infinitely many squares not divisible by 10 whose decimal expansion splits into two squares.