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ABSTRACT

We introduce a novel contrastive explanation framework for deep learning models in the medical domain based
on Variational AutoEncoder Auxiliary Classifier Wasserstein Generative Adversarial Networks (VAE-AC-
WGANS). This framework is designed to generate synthetic medical images with and without pathological
features, thereby enhancing interpretability and enabling clearer insights into model behavior. Unlike traditional
attribution methods, VAE-AC-WGAN supports more faithful reconstructions and targeted perturbations of key
image features. Building upon previous work, our approach addresses limitations in image quality and
computational efficiency. We evaluate our method qualitatively and quantitative on brain MRI and the Lung
Image Database Consortium (LIDC) datasets and present comparisons with prior techniques, aiming to
contribute toward more transparent and trustworthy Al-assisted clinical decision-making systems.
Keywords: Explainable Al, Contrastive Explanations, Medical Imaging, GAN, Variational Autoencoder,
Counterfactuals.

1. DESCRIPTION OF PURPOSE
The goal of this research is to improve model explainability in medical imaging by providing contrastive
explanations. Rather than localizing attention, our method reconstructs and contrasts images with and without
target features (e.g., presence vs. absence of pathology), thereby aligning explanations with human reasoning.

2. METHODOLOGY
We introduce the VAE-AC-WGAN architecture combining: 1) Variational AutoEncoder (VAE) to encode
images and bypass latent search; 2) Auxiliary Classifier GAN structure, using class labels as input; and
3) Wasserstein GAN with gradient penalty for training stability.

Our framework is shown in Fig. 1. The generator G receives a latent vector and a label to synthesize images.
A classifier C, encoder E, and discriminator D collaborate through backpropagation using a combination of loss
terms: reconstruction loss (mean squared error, MSE), classification loss (binary cross-entropy, BCE), and
Kullback-Leibler (KL) divergence.
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Figure 1: Architecture VAE-AC-WGAN

A key mechanism in our framework is Feature Inversion, which enables the generation of contrastive
images. This is achieved by toggling the class label at the decoding stage to reconstruct either a
pathological or a non-pathological version of the input image. For example, given an image of a healthy
lung or brain, our system can reconstruct an alternative version that simulates the presence of a lesion
or tumor, and vice versa. This inversion mechanism does not rely on manually editing the image or
searching the latent space instead, it directly switches the output condition during decoding, producing




semantically opposite versions of the same anatomical structure. This facilitates the creation of
contrastive explanations that align with human reasoning. This feature inversion capability allows us to
highlight what specific visual features the model associates with a particular pathology, thereby offering
deeper interpretability compared to traditional saliency methods like Grad-CAM [6].

To quantify explanation effectiveness, we employ the Area Under the Receiver Operating Characteristic Curve
(AUROC). Following [7], a continuous anomaly score is computed from the anomaly map (mean of differences
between input and negative reconstructed image), and a threshold is used to make a binary decision to
distinguish between images with and without anomaly.

3. RESULTS

To show generalizability of our proposed framework, we conducted our experiments for two anatomical
structures: brain and lung. We used the Brain MRI Dataset (BRATS2020 [2]) consisting of 95 tumor and
144 non-tumor axial brain MRI images (64x64), with heads approximately aligned, and the LIDC Dataset
[1], which includes 228 non-spiculated and 31 markedly spiculated lung nodule images (64x64, max slice
per nodule). Using Feature Inversion, we were able to reconstruct not only faithful versions of the
original brain MRIs, but also their contrastive images that simulate the opposite class (e.g., converting a
tumor image into a tumor-free version, and vice versa), highlighting pathological differences in a
controlled and interpretable way. For lung images, Feature Inversion also revealed pathological
differences, although with some entanglement. Data augmentation was done to balance the dataset -
including random #180° rotations and horizontal flips - to address class imbalance, particularly between
non-spiculated and markedly spiculated nodules.

Our preliminary results show successful reconstruction and manipulation of tumor presence in brain MRIs and
spiculated features in lung nodules (Fig.2). Unlike medXGAN [3], our architecture does not require latent
optimization, meaning we do not need to perform iterative search in the latent space to generate a plausible
reconstruction. Instead, our model reconstructs images directly via the encoder-decoder pathway conditioned
on class labels, making it computationally more efficient and fully deterministic at inference time. Additionally,
our method consistently generates sharper and more accurate reconstructions, especially when reconstructing
fine-grained pathology features.
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Figure 2A (left) shows brain MRI outputs with original, reconstructed, and tumor-removed images, illustrating our model’s
contrastive capabilities. Figure 2B (right) shows similar results for LIDC-IDRI scans.

Using AUROC metric to measure the separatation between images with pathology present versus without
pathology (Table 1), we show that the VAE-AC-WGAN approach produces statitically significant better results
compared to medXGAN across reconstruction variants and ground truth baselines (Dataset Label or Classifier
Output) as illustrated in Figures 3 to 6.



Table 1: AUROC for medXGAN and VAE AC-WGAN

Dataset: BRATS2020 Classifier Output 0.69 0.91
(axial cross-sectional only) Dataset Label 071 095
Dataset: LIDC Classifier Output 0.82 1.00
(spiculation feature) Dataset Label 072 -
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Figure 3: AUROC for medXGAN on brain dataset
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Figure 4: AUROC for VAE-AC-WGAN on brain dataset
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Figure 5: AUROC for medXGAN on the LIDC dataset
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Figure 6: AUROC for VAE-AC-WGAN on the LIDC dataset

4. CONCLUSIONS AND FUTURE WORK
We introduced VAE-AC-WGAN as an improved contrastive explanation method for medical imaging, with

promising results in generating meaningful visual contrasts between healthy and pathological cases. As part of
future work, we plan to expand our validation to additional datasets such as CBIS-DDSM [4] for
mammography and RadlmageNet [5], and to apply the approach to a broader range of pathologies. These efforts
aim to establish a benchmark for contrastive explanation quality in medical Al while also exploring enhanced
disentanglement techniques for more robust and interpretable generative models.
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