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ABSTRACT 
We introduce a novel contrastive explanation framework for deep learning models in the medical domain based 
on Variational AutoEncoder Auxiliary Classifier Wasserstein Generative Adversarial Networks (VAE-AC-
WGANs). This framework is designed to generate synthetic medical images with and without pathological 
features, thereby enhancing interpretability and enabling clearer insights into model behavior. Unlike traditional 
attribution methods, VAE-AC-WGAN supports more faithful reconstructions and targeted perturbations of key 
image features. Building upon previous work, our approach addresses limitations in image quality and 
computational efficiency. We evaluate our method qualitatively and quantitative on brain MRI  and the Lung 
Image Database Consortium (LIDC)  datasets and present comparisons with prior techniques, aiming to 
contribute toward more transparent and trustworthy AI-assisted clinical decision-making systems. 
Keywords: Explainable AI, Contrastive Explanations, Medical Imaging, GAN, Variational Autoencoder, 
Counterfactuals. 

1. DESCRIPTION OF PURPOSE 
The goal of this research is to improve model explainability in medical imaging by providing contrastive 
explanations. Rather than localizing attention, our method reconstructs and contrasts images with and without 
target features (e.g., presence vs. absence of pathology), thereby aligning explanations with human reasoning. 
 

2. METHODOLOGY 
We introduce the VAE-AC-WGAN architecture combining: 1) Variational AutoEncoder (VAE) to encode 
images and bypass latent search; 2) Auxiliary Classifier GAN structure, using class labels as input; and 
3) Wasserstein GAN with gradient penalty for training stability. 
 
Our framework is shown in Fig. 1. The generator G receives a latent vector and a label to synthesize images. 
A classifier C, encoder E, and discriminator D collaborate through backpropagation using a combination of loss 
terms: reconstruction loss (mean squared error, MSE), classification loss (binary cross-entropy, BCE), and 
Kullback–Leibler (KL) divergence. 
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A key mechanism in our framework is Feature Inversion, which enables the generation of contrastive 
images. This is achieved by toggling the class label at the decoding stage to reconstruct either a 
pathological or a non-pathological version of the input image. For example, given an image of a healthy 
lung or brain, our system can reconstruct an alternative version that simulates the presence of a lesion 
or tumor, and vice versa. This inversion mechanism does not rely on manually editing the image or 
searching the latent space instead, it directly switches the output condition during decoding, producing 

Figure 1: Architecture VAE-AC-WGAN 



semantically opposite versions of the same anatomical structure. This facilitates the creation of 
contrastive explanations that align with human reasoning.  This feature inversion capability allows us to 
highlight what specific visual features the model associates with a particular pathology, thereby offering 
deeper interpretability compared to traditional saliency methods like Grad-CAM [6]. 
 
To quantify explanation effectiveness, we employ the Area Under the Receiver Operating Characteristic Curve 
(AUROC). Following [7], a continuous anomaly score is computed from the anomaly map (mean of differences 
between input and negative reconstructed image), and a threshold is used to make a binary decision to 
distinguish between images with and without anomaly. 

 
3. RESULTS 

To show generalizability of our proposed framework, we conducted our experiments for two anatomical 
structures: brain and lung. We used the Brain MRI Dataset (BRATS2020 [2]) consisting of 95 tumor and 
144 non-tumor axial brain MRI images (64×64), with heads approximately aligned, and the LIDC Dataset 
[1], which includes 228 non-spiculated and 31 markedly spiculated lung nodule images (64×64, max slice 
per nodule). Using Feature Inversion, we were able to reconstruct not only faithful versions of the 
original brain MRIs, but also their contrastive images that simulate the opposite class (e.g., converting a 
tumor image into a tumor-free version, and vice versa), highlighting pathological differences in a 
controlled and interpretable way. For lung images, Feature Inversion also revealed pathological 
differences, although with some entanglement. Data augmentation was done to balance the dataset - 
including random ±180° rotations and horizontal flips - to address class imbalance, particularly between 
non-spiculated and markedly spiculated nodules. 
 
Our preliminary results show successful reconstruction and manipulation of tumor presence in brain MRIs and 
spiculated features in lung nodules (Fig.2).   Unlike medXGAN [3], our architecture does not require latent 
optimization, meaning we do not need to perform iterative search in the latent space to generate a plausible 
reconstruction. Instead, our model reconstructs images directly via the encoder-decoder pathway conditioned 
on class labels, making it computationally more efficient and fully deterministic at inference time.  Additionally, 
our method consistently generates sharper and more accurate reconstructions, especially when reconstructing 
fine-grained pathology features. 
 
 

     
  

 
 

 
Using AUROC metric to measure the separatation between images with pathology present versus without 
pathology (Table 1), we show that the VAE-AC-WGAN approach produces statitically significant better results 
compared to medXGAN across reconstruction variants and ground truth baselines (Dataset Label or Classifier 
Output) as illustrated in Figures 3 to 6. 

Figure 2A (left) shows brain MRI outputs with original, reconstructed, and tumor-removed images, illustrating our model’s 
contrastive capabilities. Figure 2B (right) shows similar results for LIDC-IDRI scans. 
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Table 1: AUROC for medXGAN and VAE_AC-WGAN 

 
 medXGAN (AC + GAN) VAE + AC + WGAN 

Reference truth Metric: AUROC from Anomaly 
Maps 

Metric: AUROC from 
Anomaly Maps 

Dataset: BRATS2020 
(axial cross-sectional only) 

Classifier Output 0.69 0.91  

Dataset Label 0.71 0.99 

Dataset: LIDC 
(spiculation feature) 

Classifier Output 0.82 1.00  

Dataset Label 0.72 0.80 

 

    
Figure 3: AUROC for medXGAN on brain dataset   

     
Figure 4: AUROC for VAE-AC-WGAN on brain dataset   

 
 



     
Figure 5: AUROC for medXGAN on the LIDC dataset  

 

    
Figure 6: AUROC for VAE-AC-WGAN on the LIDC dataset  

 
 

4. CONCLUSIONS AND FUTURE WORK 
We introduced VAE-AC-WGAN as an improved contrastive explanation method for medical imaging, with 
promising results in generating meaningful visual contrasts between healthy and pathological cases. As part of 
future work, we plan to expand our validation to additional datasets such as CBIS-DDSM [4]  for 
mammography and RadImageNet [5], and to apply the approach to a broader range of pathologies. These efforts 
aim to establish a benchmark for contrastive explanation quality in medical AI while also exploring enhanced 
disentanglement techniques for more robust and interpretable generative models. 
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