
APPENDIX A

A.1. Efficient Computation of Powers Modulo m

We illustrate an efficient method of computing powers modulo m
with an example. Assume that we want to compute 3547 mod 10.
First write 547 in base 2: 1000100011, hence 547 = 29 + 25 + 2 + 1 =
((24 +1) 24 +1) 2+1, so: 3547 = ((324 ·3)24 ·3)2 ·3. Next we compute the
expression beginning with the inner parenthesis, and reducing modulo
10 at each step: 32 = 9 (mod 10), 322

= 92 = 81 = 1 (mod 10),

323
= 12 = 1 (mod 10), 324

= 12 = 1 (mod 10), 324 · 3 = 1 · 3 = 3
(mod 10), etc. At the end we find 3547 = 7 (mod 10).

The algorithm in pseudocode would be like this:

1: procedure pow mod(a,x,m) {computes a^x mod m}
2: p := 1

3: bx := binary array(x) {x as a binary array}
4: t := a mod m

5: for k := 1 to length(bx)

6: begin
7: p := (p * p) mod m

8: if bx[k] = 1 then
{if k-th binary digit of x is 1}

9: p := (p * t) mod m

10: end
11: return p

12: end pow mod

150



A.1. EFFICIENT COMPUTATION OF POWERS MODULO M 151

The following is a program in C implementing the algorithm:

int pow(int a, int x, int m) {

int p = 1;

int y = (1 << (8 * size of(int) - 2));

a %= m;

while (!(y & x)) y >>= 1;

while (y) {

p *= p;

p %= m;

if (x & y) {

p *= a;

p %= m;

}

y >>= 1;

}

return p;

}

The following is an alternative algorithm equivalent to running
through the binary representation of the exponent from right to left
instead of left to right:

1: procedure pow mod(a,x,m) {computes a^x mod m}
2: p := 1

3: t := a mod m

4: while x > 0

5: begin
6: if x is odd then
7: p := (p * t) mod m

8: t := (t * t) mod m

9: x := floor(x/2)

10: end
11: return p

12: end pow mod



A.2. MACHINES AND LANGUAGES 152

A.2. Machines and Languages

A.2.1. Turing Machines. A Turing machine is a theoretical de-
vice intended to define rigorously the concept of algorithm. It consists
of

1. An infinite tape made of a sequence of cells. Each cell may be
empty or may contain a symbol from a given alphabet.

2. A control unit containing a finite set of instructions.
3. A tape head able to read and write (or delete) symbols from the

tape.

Tape head

Tape

control

unit

Figure A.1. Turing Machine.

Each machine instruction contains the following five parts:

1. The current machine state.
2. A tape symbol read from the current tape cell.
3. A tape symbol to write into the current tape cell.
4. A direction for the tape head to move: L = ’move one cell to

the left’, R = ’move one cell to the right’, S = ’stay in the
current cell’.

5. The next machine state.

Turing machines are generalizations of finite-state automata. A
finite-state automaton is just a Turing machine whose tape head moves
always from left to right and never writes to the tape. The input of
the finite-state automaton is presented as symbols written in the tape.

In general we make the following assumptions:

1. An input is represented on the tape by placing the letters of
the strings in contiguous tape cells. All other cells contain the
blank symbol, which we may denote λ.



A.2. MACHINES AND LANGUAGES 153

2. The tape is initially positioned at the leftmost cell of the input
string unless specified otherwise.

3. There is one starting state.
4. There is one halt state, which we denote by “Halt”.

The execution of a Turing machine stops when it enters the Halt state
or when it enters a state for which there is no valid move. The output
of the Turing machine is the contents of the tape when the machine
stops.

We say that an input string is accepted by a Turing machine if
the machine enters the Halt state. Otherwise the string is rejected.
This can happen in two ways: by entering a state other than the Halt
state from which there is no move, or by running forever (for instance
executing an infinite loop).

If a Turing machine has at least two instructions with the same state
and input letter, then the machine is nondeterministic. Otherwise it is
deterministic.

Finite-State Automata. A finite-state automata can be interpreted
as a Turing machine whose tape head moves only from left to right and
never writes to the tape.

Pushdown Automata. A pushdown automaton is finite-state au-
tomaton with a stack, i.e., a storage structure in which symbols can be
put and extracted from it by two operations: push (place on the top of
the stack) and pop (take from the top of the stack)—consequently the
last symbol put into the stack is the first symbol taken out. Addition-
ally there is a third operation, nop, that leaves the stack intact. The
next state function takes into account not only the current state and
the symbol read from the input, but also the symbol at the top of the
stack. After reading the next input symbol and the symbol at the top
of the stack, the automaton executes a stack operation and goes to the
next state. Initially there is a single symbol in the stack.

Linearly Bounded Automata. A linearly bounded automaton is a
Turing machine whose tape is limited to the size of its input string
plus two boundary cells that may not be changed.

Computable Functions. Consider a Turing machine T working on
symbols from an alphabet of only one symbol A = {|} (“stroke”). Let
f : N → N the function defined so that f(n) = m means that if the



A.2. MACHINES AND LANGUAGES 154

initial input of T consists of a string of n + 1 strokes, the output of T
is a string of m + 1 strokes. We say that f is computed by the Turing
machine T . A computable function is a function computed by some
Turing machine. A computable function f(n) halts for a given value
of its argument n if T with input n + 1 strokes halts. A computable
function f is total if f(n) halts for every n.

An effective enumeration of a set is a listing of its elements by an
algorithm.

A.2.2. Hierarchy of Languages. Here we mention a hierarchy
of languages that includes (and extends) Chomsky’s classification, in
increasing order of inclusion.

1. Regular languages. They are recognized by finite-state automata.
Example: {ambn | m,n = 1, 2, 3 . . . }.

2. Deterministic context-free languages, recognized by determinis-
tic pushdown automata. Example: {anbn | n = 1, 2, 3 . . . }.

3. Context-free languages, recognized by nondeterministic push-
down automata. Example: palindromes over {a, b}.

4. Context-sensitive languages, languages without λ recognized by
linearly bounded automata. Example: {anbncn | n = 1, 2, 3 . . . }

5. Unrestricted or phrase-structure grammars, recognized by Tur-
ing machines.

6. Recursively enumerable languages. A language is recursively
enumerable if there is a Turing machine that outputs all the
strings of the language. Example: {an | fn(n) halts}, where
f0, f1, f2, . . . is an effective enumeration of all computable func-
tions.

7. Nongramatical languages, languages that are not definable by
any grammar and cannot be recognized by Turing machines.
Example: {an | fn is total}.


