
CS 310 (sec 20) - Winter 2004 - Final Exam (solutions)

SOLUTIONS

1. (Logic) Determine the truth value of each of the following statements:

S1: ∃x∃y∃z (x = y + z)

S2: ∃x∃y∀z (x = y + z)

S3: ∃x∀y∃z (x = y + z)

S4: ∃x∀y∀z (x = y + z)

S5: ∀x∃y∃z (x = y + z)

S6: ∀x∃y∀z (x = y + z)

S7: ∀x∀y∃z (x = y + z)

S8: ∀x∀y∀z (x = y + z)

in the universe of discourse indicated by the header of each column of the
following table (write your answers in the table):

Solution:

{0, 1, 2} N Z Q

S1 T T T T

S2 F F F F

S3 T F T T

S4 F F F F

S5 T T T T

S6 F F F F

S7 F F T T

S8 F F F F
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2. (Functions) Let f : R → R3 and g : R3 → R the following functions:

f(x) = (x, x, x)

g(x, y, z) = x + y + z

1. Find g ◦ f .

2. Find f ◦ g.

3. Determine if g ◦ f is one-to-one, onto or bijective—and in the latter
case, find its inverse.

4. Same question for f ◦ g.

Solution:

1. (g ◦ f)(x) = g(f(x)) = g(x, x, x) = x + x + x = 3x.

2. (f ◦ g)(x, y, z) = f(g(x, y, z)) = f(x+ y + z) = (x+ y + z, x+ y + z, x+
y + z).

3. g ◦ f is bijective and its inverse is (g ◦ f)−1(x) = x/3.

4. f ◦g is not one-to-one because for instance (f ◦g)(0, 0, 0) = (0, 0, 0) and
(f ◦ g)(1,−1, 0) = (0, 0, 0), so (0, 0, 0) and (1,−1, 0) are two different
elements with the same image. It is not onto either because the image
contains only elements of the form (t, t, t), so for instance (0, 1, 2) is not
in the image.
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3. (Algorithms) Consider the following algorithm:

1: procedure proc(n)

2: if n = 0 then
3: return(1)
4: else
5: return(proc(n-1) + proc(n-1))

6: end proc

(a) Find the output of proc(n) for any n ≥ 0.

(b) Assume the complexity of this algorithm is given by the number of
times the return commands are executed. Find its complexity in Θ
notation.

(c) Replace the statement in line 5 with a different statement that yields
and equivalent algorithm (same output for every n ≥ 0) of complexity
Θ(n).

Solution:

(a) proc(n) = 2n.

(b) If an = number of times the return commands are executed for a given
value of n, then a0 = 1 and an+1 = 2an + 1 for n > 0. Solving this
recurrence we get an = 2n+1 − 1, hence the complexity is Θ(2n).

(c) 1: procedure proc(n)

2: if n = 0 then
3: return(1)
4: else
5: return(2*proc(n-1))
6: end proc
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4. (Combinatorics) Find the number of integer solutions of

x1 + x2 + x3 = 15

subject to the conditions:

(a) x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

(b) x1 ≥ 1, x2 ≥ 1, x3 ≥ 1.

(c) x1 ≥ 1, x2 ≥ 2, x3 ≥ 3.

(d) 0 ≤ x1 ≤ 6, x2 ≥ 0, x3 ≥ 0.

Solution:

(a)
(

3 + 15− 1

15

)
=

(
17

15

)
= 136 .

(b) After the change of variables x1 = y1 + 1, x2 = y2 + 1, x3 = y3 + 1, the
equation becomes y1 + y2 + y3 = 12, subject to the conditions y1 ≥ 0,
y2 ≥ 0, y3 ≥ 0. Its number of solutions is(

3 + 12− 1

12

)
=

(
14

12

)
= 91 .

(c) After the change of variables x1 = y1 + 1, x2 = y2 + 2, x3 = y3 + 3, the
equation becomes y1 + y2 + y3 = 9, subject to the conditions y1 ≥ 0,
y2 ≥ 0, y3 ≥ 0. Its number of solutions is(

3 + 9− 1

12

)
=

(
11

9

)
= 55 .

(d) Let S1 be the set of solutions verifying x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, S2 the
set of solutions verifying x1 ≥ 7, x2 ≥ 0, and S3 the set of solutions
verifying 0 ≤ x1 ≤ 6, x2 ≥ 0, x3 ≥ 0. Then we have

|S1| = 136 , |S2| =
(

3 + 8− 1

8

)
=

(
10

8

)
= 45 ,

and
|S3| = |S1| − |S2| = 136− 45 = 91 .
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Alternatively, we can write the equation x2 + x3 = 15 − x1, so the
number of solutions is

6∑
x1=0

(
2 + 15− x1 − 1

15− x1

)
=

6∑
x1=0

(16− x1)

= 16 + 15 + 14 + 13 + 12 + 11 + 10

= 91 .
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5. (Graphs) In each of the following cases draw a connected simple planar graph
with the given characteristics, or prove that none exists:

(a) 4 vertices all of degree 3, 4 regions.

(b) 4 vertices, 6 edges, 5 regions.

(c) 4 vertices all of degree 4.

(d) 6 vertices all of degree 3, 5 regions.

Solution:

(a) The following graph fulfills the requirements:

(b) No such graph exists because we have v − e + f = 4 − 6 + 5 = 3,
contradicting Euler’s formula.

(c) No such graph exists. There are various ways to prove it:

• Such graph would have 4 · 4/2 = 8 edges, contradicting the in-
equality e ≤ 3v − 6.

• In a simple graph (no parallel edges or loops) with n vertices each
vertex has degree at most n−1 (at most one edge connecting that
vertex to each of the other n− 1 vertices).

(d) The following graph fulfills the requirements:
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6. (Shortest Path) Use Dijkstra’s algorithm to find the length of a shortest path,
and a shortest path, from a to z in the following weighted graph:

a

b

c d

f g h

ij

z

2 6

45

6

6

4

5

3

7 2

6

5

7

4

7

5

3 6

e

2

3 5

Show also the final L-values of all vertices of the graph.

Solution:

The shortest path is abcdz. Its length is 12.

L(a) = 0, L(b) = 4, L(c) = 7, L(d) = 9, L(e) = 7, L(f) = 5, L(g) = 11,
L(h) = 13, L(i) = 8, L(j) = 2, L(z) = 12.
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7. (Binary Trees) Given the following string: abcde

(a) Find all full binary trees of which it can be the inorder transversal.

(b) Find all full binary trees of which it can be the preorder transversal.

(c) Find all full binary trees of which it can be the postorder transversal.

Solution:

Recall that a full binary tree is a binary tree in which each each vertex has
either two children or zero children—this reduces the number of possibilities,
for instance the following is not a valid answer to part (a) because the tree
is not full binary:

a

c

e

db

In a full binary tree with 5 vertices 2 of them must be interior and the
other 3 are leaves, so there are two possibilities depending on whether the
interior vertex different from the root is a left child of the root or a right
child of the root. For each of those possibilities we get a possible answer by
labeling the vertices appropriately:

b

d

e a

b

c

d

ca e

b

a

e b

a

d

c

dc e

c

e

d a

e

b

d

ba c

(a) Inorder transversal

(b) Preorder transversal

(c) Postorder transversal
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8. (Combinatorial Circuits and Boolean Algebras) Write the output f(x, y, z) of
the following combinatorial circuit as a Boolean expression involving x, y and
z. Simplify that Boolean expression. Design an equivalent simpler circuit
based on the simplified expression using the minimum possible number of
gates.

x

y

z

f(x,y,z)

Solution:

f(x, y, z) = (x ∨ y ∨ z) ∧ (x ∧ y ∧ z)

= ((x ∧ y) ∨ z) ∧ ((x ∧ y) ∨ z)

= x ∧ y .

y

x
x y
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9. (Automata)

(a) Design (draw the transition diagram of) a finite-state machine that
inputs any string of 0’s and 1’s and outputs the difference between the
current and the previous symbol, plus 1 (for the first symbol assume
that the “previous” symbol is 0.) For instance input “0011101” would
produce output “1121102”.

(b) Design a finite-state automaton that accepts the language

L = {abnc | n = 0, 1, 2, . . . } .

Solution:

(a) start // GFED@ABCσ0

0/1

¦¦ 1/2
,, GFED@ABCσ1

1/1

¦¦

0/0

ll

(b) start // GFED@ABCσ0

a ,,

b

!!B
BB

BB
BB

BB

c **

GFED@ABCσ1

b

¦¦ c ,,

a

²²

GFED@ABC?>=<89:;σ2
a

©©
b
||

||

~~||
||

cttGFED@ABCσ3
a

33

b

YY c

ll
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10. (Languages) Let G be the grammar with terminal symbols {a, b}, non ter-
minal symbols {σ, S}, productions:

σ → σb , σ → Sb , σ → aS , S → a

and starting symbol σ.

Prove that the language L = L(G) associated to G is regular by finding
an equivalent grammar for L that is regular.

Solution:

The language associated to G is can be described with the regular ex-
pression a(a + b)b∗, i.e., one a followed by a or b, followed by any number of
b’s.

The following is an equivalent regular grammar for L: terminal symbols
{a, b}, non terminal symbols {σ,A,B}, productions:

σ → aA , A → aB , A → bB , B → bB , B → λ ,

and starting symbol σ.
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