

CS 310 - Winter 2001 - Midterm Exam (solutions)

SOLUTIONS

1. (Logic)

(a) Prove the following logical equivalence by using Laws of Logic (Algebra of Propositions):

$$p \rightarrow (q \rightarrow r) \Leftrightarrow (p \wedge q) \rightarrow r.$$

(Assume that ' \rightarrow ' is defined by " $p \rightarrow q \Leftrightarrow \neg p \vee q$ ".)

Solution:

$$\begin{aligned} p \rightarrow (q \rightarrow r) &\stackrel{\text{(Def. of } \rightarrow\text{)}}{\Leftrightarrow} \neg p \vee (\neg q \vee r) \stackrel{\text{(Associative)}}{\Leftrightarrow} (\neg p \vee \neg q) \vee r \\ &\stackrel{\text{(DeMorgan's)}}{\Leftrightarrow} \neg(p \wedge q) \vee r \stackrel{\text{(Def. of } \rightarrow\text{)}}{\Leftrightarrow} (p \wedge q) \rightarrow r \end{aligned}$$

(b) Determine the truth value of each of the following statements:

$$S1: \exists x \forall y \exists z (x = y + z)$$

$$S2: \forall x \forall y \exists z (x = y + z)$$

$$S3: \forall x \exists y [(x < y) \wedge \forall z (x < z \rightarrow y \leq z)]$$

in the universe of discourse indicated by the header of each column of the following table (write your answers in the table):

Solution:

	$\{0, 1, 2\}$	\mathbb{N}	\mathbb{Z}	\mathbb{Q}
S1	1	0	1	1
S2	0	0	1	1
S3	0	1	1	0

Remarks: S2 basically means that the difference $x - y$ of any two elements of \mathcal{U} (universe of discourse) is also in \mathcal{U} —this is true in \mathbb{Z} and \mathbb{Q} , but it is false in \mathbb{N} and $\{0, 1, 2\}$. S1 means the same but just for some x —so we may take say $x = 0$ and see that the statement is true in \mathbb{Z} and \mathbb{Q} . However it is false in \mathbb{N} because $x - y \notin \mathbb{N}$ if $x < y$. On the other hand, taking $x = 2$ we see that it is true in $\{0, 1, 2\}$. Here S3 can be interpreted as “every element has an immediate successor”—true in \mathbb{N} and \mathbb{Z} , but false in $\{0, 1, 2\}$ (2 has no successor) and \mathbb{Q} (the order in \mathbb{Q} is dense, i.e., between two rational numbers there is always another rational number.)”

2. (Relations) On \mathbb{C} (set of complex numbers) we define the relations

$$x \mathcal{R} y \Leftrightarrow \exists n \in \mathbb{N}, x + n = y$$

and

$$x \mathcal{S} y \Leftrightarrow \exists n \in \mathbb{Z}, x + n = y$$

- (a) Prove that \mathcal{R} is a partial order.
- (b) Prove that \mathcal{S} is an equivalence relation.

Solution:

- (a) \mathcal{R} is a partial order:

- Reflexive: $x + 0 = x \Rightarrow x \mathcal{R} x$.
- Antisymmetric: We have:

$$x \mathcal{R} y \Leftrightarrow \exists n \in \mathbb{N}, x + n = y$$

and

$$y \mathcal{R} x \Leftrightarrow \exists n' \in \mathbb{N}, y + n' = x$$

Adding the last equations we get $n + n' = 0$, but since they must be natural numbers, we conclude $n = n' = 0$, which implies $x = y$.

- Transitive:

$$\left. \begin{array}{l} x \mathcal{R} y \Rightarrow \exists n \in \mathbb{N}, x + n = y \\ y \mathcal{R} z \Rightarrow \exists n' \in \mathbb{N}, y + n' = z \end{array} \right\} \Rightarrow x + n + n' = z \Rightarrow x \mathcal{R} z.$$

- (b) \mathcal{S} is an equivalence relation:

- Reflexive: $x + 0 = x \Rightarrow x \mathcal{S} x$.
- Symmetric: $x \mathcal{S} y \Rightarrow \exists n \in \mathbb{Z}, x + n = y \Rightarrow y + (-n) = x \Rightarrow y \mathcal{S} x$.
- Transitive:

$$\left. \begin{array}{l} x \mathcal{S} y \Rightarrow \exists n \in \mathbb{Z}, x + n = y \\ y \mathcal{S} z \Rightarrow \exists n' \in \mathbb{Z}, y + n' = z \end{array} \right\} \Rightarrow x + n + n' = z \Rightarrow x \mathcal{S} z.$$

3. (Functions) For each one of the following functions, determine if it is one-to-one (but not onto), onto (but not one-to-one), or a one-to-one correspondence. If it is a one-to-one correspondence, find its inverse.

- (a) $f : \mathbb{Z} \rightarrow \mathbb{Z}$, $f(x) = 2x + 1$.
- (b) $f : \mathbb{Q} \rightarrow \mathbb{Q}$, $f(x) = 2x + 1$.
- (c) $f : \mathbb{Z} \rightarrow \mathbb{N}$, $f(x) = |x|$ = “absolute value of x ”.

Solution:

- (a) One-to-one (but not onto): $f(x) = f(y) \Rightarrow 2x + 1 = 2y + 1 \Rightarrow x = y$, so f is one-to-one. But $f(x) = 2x + 1$ takes only odd values, $f(\mathbb{Z})$ does not contain even numbers, so f is not onto.
- (b) One-to-one correspondence: the inverse is $f^{-1}(x) = (x - 1)/2$. In fact $f^{-1} \circ f(x) = f^{-1}(f(x)) = ((2x + 1) - 1)/2 = 2x/2 = x = \text{id}_{\mathbb{Q}}(x)$, and $f \circ f^{-1}(x) = f(f^{-1}(x)) = 2((x - 1)/2) + 1 = (x - 1) + 1 = x = \text{id}_{\mathbb{Q}}(x)$. Since f has an inverse, it is indeed a one-to-one correspondence.
- (c) Onto but not one-to-one. If $y \in \mathbb{N}$ we must prove that there is some $x \in \mathbb{Z}$ such that $f(x) = |x| = y$. This can be accomplished by taking $x = y$, since for any $x \in \mathbb{N}$, $f(x) = |x| = x$. On the other hand it is not one-to-one, since there are different elements in \mathbb{Z} with the same image, e.g., $f(1) = |1| = 1$, $f(-1) = |-1| = 1$, so $f(1) = f(-1)$.

4. (Functions and Sets) Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be the function $f(x, y) = (2x+y, 2x-y)$, and let D be the following subset of \mathbb{R}^2 :

$$D = \{(a, a) \mid a \in \mathbb{R}\}.$$

Find (a) $f(D)$, (b) $f^{-1}(D)$, (c) $f(D) \cap f^{-1}(D)$.

Solution:

(a) $f(D) = \{f(a, a) \mid a \in \mathbb{R}\} = \{(3a, a) \mid a \in \mathbb{R}\}.$

Another way to express the solution is $f(D) = \{(x, y) \in \mathbb{R}^2 \mid x = 3y\}.$

(b) We have: $(x, y) \in f^{-1}(D) \Leftrightarrow f(x, y) \in D \Leftrightarrow (2x+y, 2x-y) \in D \Leftrightarrow 2x+y = 2x-y \Leftrightarrow y = 0$. Hence:

$$f^{-1}(D) = \{(x, y) \in \mathbb{R}^2 \mid y = 0\}.$$

or

$$f^{-1}(D) = \{(x, 0) \mid x \in \mathbb{R}\}.$$

(c) $(x, y) \in f(D) \cap f^{-1}(D) \Leftrightarrow x = 3y$ and $y = 0 \Leftrightarrow (x, y) = (0, 0)$, hence:

$$f(D) \cap f^{-1}(D) = \{(0, 0)\}.$$

5. (Operations) Find the properties (commutative, associative, existence of identity element, existence of inverse) verified by the following operation defined on the real interval $[1, \infty)$:

$$x * y = \sqrt{x^2 + y^2 - 1}.$$

Solution:

- Commutative property:

$$x * y = \sqrt{x^2 + y^2 - 1} = \sqrt{y^2 + x^2 - 1} = y * x.$$

- Associative property:

$$(x * y) * z = \sqrt{\left(\sqrt{x^2 + y^2 - 1}\right)^2 + z^2 - 1} = \sqrt{x^2 + y^2 + z^2 - 2},$$

$$x * (y * z) = \sqrt{x^2 + \left(\sqrt{y^2 + z^2 - 1}\right)^2 - 1} = \sqrt{x^2 + y^2 + z^2 - 2},$$

hence $(x * y) * z = x * (y * z)$.

- Identity element. The identity element is 1:

$$1 * x = x * 1 = \sqrt{x^2 + 1 - 1} = x.$$

- Inverse element: Given an $x \in [1, \infty)$, its inverse x' must verify:

$$1 = x * x' = \sqrt{x^2 + x'^2 - 1},$$

hence,

$$x^2 + x'^2 = 2.$$

Since $x, x' \geq 1$, necessarily $x = x' = 1$. So the only invertible element is 1.

6. (Counting) Consider the following equation:

$$x_1 + x_2 + x_3 = 15.$$

- (a) How many non negative integer solutions does it have?
- (b) How many of those solutions are strictly positive?
- (c) How many non negative solutions consist of numbers divisible by three only?
- (d) How many non negative solutions verify that x_1 is a multiple of 5 (including 0)?

Do not try to find the solutions, just compute their number.

Solution:

- (a) $\binom{3+15-1}{15} = \binom{17}{15} = 136.$
- (b) Calling $x_1 = y_1 + 1, x_2 = y_2 + 1, x_3 = y_3 + 1$, the equation becomes:

$$y_1 + y_2 + y_3 = 15 - 3 = 12.$$

Its non negative solutions correspond to strictly positive solutions to the original equation. Their number is $\binom{3+12-1}{12} = \binom{14}{12} = 91.$

- (c) Calling $x_1 = 3z_1, x_2 = 3z_2, x_3 = 3z_3$, the equation becomes:

$$z_1 + z_2 + z_3 = 5.$$

Its non negative solutions correspond to non negative multiple of three solutions to the original equation. Their number is $\binom{3+5-1}{5} = \binom{7}{5} = 21.$

- (d) The possible values of x_1 are 0, 5, 10 and 15, so the problem requires to count the number of solutions to the following equations:

$$\begin{array}{ll} 0 + x_2 + x_3 = 15 & \text{or} \quad x_2 + x_3 = 15 \\ 5 + x_2 + x_3 = 15 & \text{or} \quad x_2 + x_3 = 10 \\ 10 + x_2 + x_3 = 15 & \text{or} \quad x_2 + x_3 = 5 \\ 15 + x_2 + x_3 = 15 & \text{or} \quad x_2 + x_3 = 0 \end{array}$$

The answer is $\binom{16}{15} + \binom{11}{10} + \binom{6}{5} + \binom{1}{0} = 16 + 11 + 6 + 1 = 34.$