

CS 310 - Winter 2000 - Sample Final Exam

Last Name:	
First Name:	

1. (Logic) Determine the truth value of each the following statements:

1. $[\exists x \forall y (x \leq y)] \vee [\exists x \forall y (y \leq x)]$
2. $[\exists x \forall y (x \leq y)] \wedge [\exists x \forall y (y \leq x)]$
3. $\exists x \forall y [(x \leq y) \vee (y \leq x)]$
4. $\exists x \forall y [(x \leq y) \wedge (y \leq x)]$

in each of the following universes of discourse: $\mathcal{U} = \{0, 1, 2, 3, 4, 5\}$, $\mathcal{U} = \mathbb{N}$, $\mathcal{U} = \mathbb{Z}$, $\mathcal{U} = \{x \in \mathbb{Z} \mid x \leq 0\}$.

- 2.** (Sets) Let A, B, C be the following sets: $A = \{x \in \mathbb{Z} \mid \exists y \in \mathbb{Z}, y = x^2\}$, $B = \{x \in \mathbb{R} \mid x < 20\}$, $C = \{x \in \mathbb{R} \mid x > -5\}$. Find $A \cap B \cap C$.
- 3.** (Functions) Let $\overline{\mathbb{Q}} = \mathbb{Q} \cup \{\infty\}$. Let $S : \overline{\mathbb{Q}} \rightarrow \overline{\mathbb{Q}}$, $T : \overline{\mathbb{Q}} \rightarrow \overline{\mathbb{Q}}$ be the following functions: $S(x) = -1/x$, $T(x) = x + 1$ (assume $\infty + 1 = \infty$, $-1/\infty = 0$, $-1/0 = \infty$.) Find the following functions: $S^2(x)$, $S^{-1}(x)$, $T^2(x)$, $T^{-1}(x)$, $(S \circ T)(x)$, $(S \circ T)^2(x)$.
- 4.** (Operations) Given a group $(G, *)$, a subgroup of G is any non-empty subset $H \subseteq G$ such that $(H, *)$ is a group. Prove that a non-empty subset $H \subseteq G$ is a subgroup of G if and only if for every $x, y \in H$, $x * y^{-1} \in H$.
- 5.** (Relations) If H is a subgroup of $(G, *)$, prove that the relation $x \mathcal{R} y \Leftrightarrow x * y^{-1} \in H$ for every $x, y \in G$ is an equivalence relation.
- 6.** (Counting) We have 3 Mathematics books, 4 Physics books and 5 Computer Science books. We want to put them on a shelf in such a way that the books of the same subject remain together. In how many ways can the books be put on the shelf with that restriction?
- 7.** (Recurrences) Solve the following recurrence:

$$x_n = 5x_{n-1} - 6x_{n-2}; \quad x_0 = 0, \quad x_1 = 1.$$

8. (Divisibility) Solve the following Diophantine equation:

$$11x + 5y = 1.$$

- 9.** (Graphs) The vertices and edges of a polyhedron define a graph. Which Platonic solids (tetrahedron, cube, octahedron, dodecahedron, icosahedron) contain an Euler circuit? Why?
- 10.** (Trees) Represent the following algebraic expression with a tree:

$$a * b + c * d \uparrow e.$$

Express it in Polish notation and in reversed Polish notation.