

CS 310 - Winter 2000 - Midterm Exam (solutions)

SOLUTIONS

1. (Logic)

(a) Prove the following logical equivalence by using truth tables:

$$p \vee (q \vee r) \Leftrightarrow (p \vee q) \vee r ,$$

where “ \vee ” represents exclusive or.

(b) Find the negation of the following quantified statement, leaving the answer in prenex normal form and the statement inside in disjunctive normal form:

$$\forall x ((x > 0) \wedge \exists y (y < x)) .$$

Solution:

(a) The truth table is the following:

p	q	r	$p \vee q$	$(p \vee q) \vee r$	$q \vee r$	$p \vee (q \vee r)$
0	0	0	0	0	0	0
0	0	1	0	1	1	1
0	1	0	1	1	1	1
0	1	1	1	0	0	0
1	0	0	1	1	0	1
1	0	1	1	0	1	0
1	1	0	0	0	1	0
1	1	1	0	1	0	1

Since $p \vee (q \vee r)$ and $(p \vee q) \vee r$ have the same truth table, they are logically equivalent.

(b)

$$\begin{aligned} \neg \forall x ((x > 0) \wedge \exists y (y < x)) \Leftrightarrow \neg \forall x \exists y ((x > 0) \wedge (y < x)) \Leftrightarrow \\ \exists x \forall y \neg ((x > 0) \wedge (y < x)) \Leftrightarrow \exists x \forall y (\neg(x > 0) \vee \neg(y < x)) \Leftrightarrow \\ \exists x \forall y ((x \leq 0) \vee (y \geq x)) . \end{aligned}$$

2. (Sets) Assume that the universe of discourse is $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Let A, B, C be the following sets: $A = \{2x \mid x \in U\}$, $B = \{3x \mid x \in U\}$, $C = \{x \in U \mid \exists y \in U, y = x + 2\}$.

1. List the elements of A , B and C .

2. Find:

$$A \cup B =$$

$$A \cap C =$$

$$B \cap C =$$

$$(A \cap C) \Delta (B \cap C) =$$

$$A \Delta B =$$

$$(A \Delta B) \cap C =$$

Solution:

1. Since U is the universe of discourse, all the sets involved must be subsets of U :

$$A = (\text{elements of } U \text{ of the form } 2x \text{ for } x \in U) = \{2, 4, 6, 8\}$$

$$B = (\text{elements of } U \text{ of the form } 3x \text{ for } x \in U) = \{3, 6, 9\}$$

$$C = \{1, 2, 3, 4, 5, 6, 7\}$$

(I will also accept the answers $A = \{2, 4, 6, 8, 10, 12, 14, 16, 18\}$, $B = \{3, 6, 9, 12, 15, 18, 21, 24, 27\}$, and the corresponding ones for the second part of the problem.)

2. $A \cup B = \{2, 3, 4, 6, 8, 9\}$

$$A \cap C = \{2, 4, 6\}$$

$$B \cap C = \{3, 6\}$$

$$(A \cap C) \Delta (B \cap C) = \{2, 3, 4\}$$

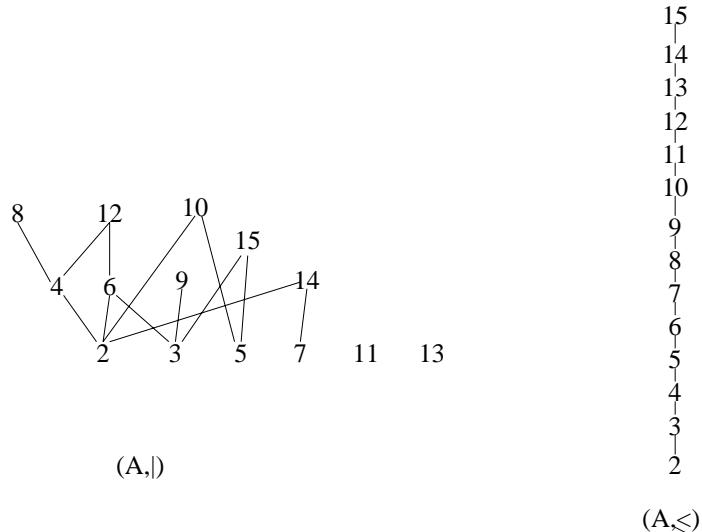
$$A \Delta B = \{2, 3, 4, 8, 9\}$$

$$(A \Delta B) \cap C = \{2, 3, 4\}$$

3. (Relations) Let A be the set $A = \{x \in \mathbb{Z} \mid 2 \leq x \leq 15\}$. Draw the Hasse diagram and find the largest, least, maximal and minimal elements of the following posets, if they exist:

1. $(A, |)$, where “ $|$ ” represents the relation of divisibility.
2. (A, \leq) , where “ \leq ” represents the usual number inequality.

Solution:



	largest	least	maximal	minimal
$(A,)$	does not exist	does not exist	8, 9, 10, 11, 12, 13, 14, 15	2, 3, 5, 7, 11, 13
(A, \leq)	15	2	15	2

4. (Functions) Let $f, g : \mathbb{R} \rightarrow \mathbb{R}$ be the following functions: $f(x) = 2x$, $g(x) = x + 1$. Find $g \circ f$, $f \circ g$, f^{-1} , g^{-1} , $g^{-1} \circ f^{-1}$, $f^{-1} \circ g^{-1}$, $(g \circ f)^{-1}$ and $(f \circ g)^{-1}$.

Solution:

$$(g \circ f)(x) = g(f(x)) = f(x) + 1 = 2x + 1.$$

$$(f \circ g)(x) = f(g(x)) = 2g(x) = 2(x + 1) = 2x + 2.$$

$$(f^{-1})(x) = x/2.$$

$$(g^{-1})(x) = x - 1.$$

$$(g^{-1} \circ f^{-1})(x) = g^{-1}(f^{-1}(x)) = f^{-1}(x) - 1 = \frac{x}{2} - 1.$$

$$(f^{-1} \circ g^{-1})(x) = f^{-1}(g^{-1}(x)) = \frac{g^{-1}(x)}{2} = \frac{x - 1}{2}.$$

$$(g \circ f)^{-1}(x) = (f^{-1} \circ g^{-1})(x) = \frac{x - 1}{2}.$$

$$(f \circ g)^{-1}(x) = (g^{-1} \circ f^{-1})(x) = \frac{x}{2} - 1.$$

5. (Operations) Find the properties (commutative, associative, existence of identity element, existence of inverse) verified by the following operation on \mathbb{Z} :

$$a * b = a + b + ab.$$

Justify your answer.

Solution:

1. It is commutative:

$$\begin{aligned} a * b &= a + b + ab, \\ b * a &= b + a + ba, \end{aligned}$$

hence $a * b = b * a$.

2. It is associative:

$$\begin{aligned} a * (b * c) &= a * (b + c + bc) = a + (b + c + bc) + a(b + c + bc) \\ &= a + b + c + bc + ab + ac + abc, \\ (a * b) * c &= (a + b + ab) * c = (a + b + ab) + c + (a + b + ab)c \\ &= a + b + ab + c + ac + bc + abc, \end{aligned}$$

hence $a * (b * c) = (a * b) * c$.

3. The identity element is 0:

$$a * 0 = 0 * a = a + 0 + 0 \cdot 0 = a.$$

4. There is no inverse element in general:

$$a * a' = a + a' + aa' = 0 \Rightarrow a' = -\frac{a}{1+a},$$

hence the only invertible elements are 0 and -2 .

6. (Counting) Let $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$.

- (a) How many subsets of A contain exactly 2 even numbers and 3 odd numbers?
- (b) How many permutations of size 5 of the elements of A contain exactly 2 even numbers and 3 odd numbers?

Solution:

- (a) Set A has 4 even numbers, and we can select 2 even numbers from it in $\binom{4}{2} = 6$ ways. On the other hand there are 5 odd numbers in A , and we can select 3 of them in $\binom{5}{3} = 10$ ways. By the product rule we can select 2 even numbers and 3 odd numbers in $6 \times 10 = 60$ ways.
- (b) We can generate the desired permutations by selecting 2 even numbers and 3 odd numbers, which can be done in 60 ways, then permuting those 5 elements in $5! = 120$ ways. By the product rule, the answer is $60 \cdot 120 = 7200$.